ODE Tableaus
Explicit Runge-Kutta Methods
constructEuler- Euler's 1st order method.constructHuen()Huen's order 2 method.constructRalston()- Ralston's order 2 method.constructSSPRK22()- Explicit SSP method of order 2 using 2 stages.constructKutta3- Kutta's classic 3rd order method.constructSSPRK33()- Explicit SSP method of order 3 using 3 stages.constructSSPRK43()- Explicit SSP method of order 3 using 4 stages.constructRK4- The classic 4th order "Runge-Kutta" method.constructRK438Rule- The classic 4th order "3/8th's Rule" method.constructSSPRK104()- Explicit SSP method of order 4 using 10 stages.constructBogakiShampine3()- Bogakai-Shampine's 2/3 method.constructRKF4()- Runge-Kutta-Fehlberg 3/4.constructRKF5()- Runge-Kutta-Fehlberg 4/5.constructRungeFirst5()- Runge's first 5th order method.constructCassity5()- Cassity's 5th order method.constructLawson5()- Lawson's 5th order method.constructLutherKonen5- Luther-Konen's first 5th order method.constructLutherKonen52()- Luther-Konen's second 5th order method.constructLutherKonen53()- Luther-Konen's third 5th order method.constructPapakostasPapaGeorgiou5()- Papakostas and PapaGeorgiou more stable order 5 method.constructPapakostasPapaGeorgiou52()- Papakostas and PapaGeorgiou more efficient order 5 method.constructTsitouras5()- Tsitouras's order 5 method.constructBogakiShampine5()- Bogaki and Shampine's Order 5 method.constructSharpSmart5()- Sharp and Smart's Order 5 method.constructCashKarp()- Cash-Karp method 4/5.constructDormandPrince()- Dormand-Prince 4/5.constructButcher6()- Butcher's first order 6 method.constructButcher62()- Butcher's second order 6 method.constructButcher63()- Butcher's third order 6 method.constructDormandPrince6()- Dormand-Prince's 5/6 method.constructSharpVerner6()Sharp-Verner's 5/6 method.constructVerner916()- Verner's more efficient order 6 method (1991).constructVerner9162()- Verner's second more efficient order 6 method (1991).constructVernerRobust6()- Verner's "most robust" order 6 method.constructVernerEfficient6()- Verner's "most efficient" order 6 method.constructPapakostas6()- Papakostas's order 6 method.constructLawson6()- Lawson's order 6 method.constructTsitourasPapakostas6()- Tsitouras and Papakostas's order 6 method.constructDormandLockyerMcCorriganPrince6()- the Dormand-Lockyer-McCorrigan-Prince order 6 method.constructTanakaKasugaYamashitaYazaki6A()- Tanaka-Kasuga-Yamashita-Yazaki order 6 method A.constructTanakaKasugaYamashitaYazaki6B()- Tanaka-Kasuga-Yamashita-Yazaki order 6 method B.constructTanakaKasugaYamashitaYazaki6C()- Tanaka-Kasuga-Yamashita-Yazaki order 6 method C.constructTanakaKasugaYamashitaYazaki6D()- Tanaka-Kasuga-Yamashita-Yazaki order 6 method D.constructMikkawyEisa()- Mikkawy and Eisa's order 6 method.constructChummund6()- Chummund's first order 6 method.constructChummund62()- Chummund's second order 6 method.constructHuta6()- Huta's first order 6 method.constructHuta62()- Huta's second order 6 method.constructVerner6()- An old order 6 method attributed to Verner.constructDverk()- The classic DVERK algorithm attributed to Verner.constructClassicVerner6()- A classic Verner order 6 algorithm (1978).constructButcher7()- Butcher's order 7 algorithm.constructClassicVerner7()- A classic Verner order 7 algorithm (1978).constructVernerRobust7()- Verner's "most robust" order 7 algorithm.constructTanakaYamashitaStable7()- Tanaka-Yamashita more stable order 7 algorithm.constructTanakaYamashitaEfficient7()- Tanaka-Yamashita more efficient order 7 algorithm.constructSharpSmart7()- Sharp-Smart's order 7 algorithm.constructSharpVerner7()- Sharp-Verner's order 7 algorithm.constructVerner7()- Verner's "most efficient" order 7 algorithm.constructVernerEfficient7()- Verner's "most efficient" order 7 algorithm.constructClassicVerner8()- A classic Verner order 8 algorithm (1978).constructCooperVerner8()- Cooper-Verner's first order 8 algorithm.constructCooperVerner82()- Cooper-Verner's second order 8 algorithm.constructTsitourasPapakostas8()- Tsitouras-Papakostas order 8 algorithm.constructdverk78()- The classic order 8 DVERK algorithm.constructEnrightVerner8()- Enright-Verner order 8 algorithm.constructCurtis8()- Curtis' order 8 algorithm.constructVerner8()- Verner's "most efficient" order 8 algorithm.constructRKF8()- Runge-Kutta-Fehlberg Order 7/8 method.constructDormandPrice8()- Dormand-Prince Order 7/8 method.constructDormandPrince8_64bit()- Dormand-Prince Order 7/8 method. Coefficients are rational approximations good for 64 bits.constructVernerRobust9()- Verner's "most robust" order 9 method.constructVernerEfficient9()- Verner's "most efficient" order 9 method.constructSharp9()- Sharp's order 9 method.constructTsitouras9()- Tsitouras's first order 9 method.constructTsitouras92()- Tsitouras's second order 9 method.constructCurtis10()- Curtis' order 10 method.constructOno10()- Ono's order 10 method.constructFeagin10Tableau()- Feagin's order 10 method.constructCurtis10()- Curtis' order 10 method.constructBaker10()- Baker's order 10 method.constructHairer10()Hairer's order 10 method.constructFeagin12Tableau()- Feagin's order 12 method.constructOno12()- Ono's order 12 method.constructFeagin14Tableau()Feagin's order 14 method.
Implicit Runge-Kutta Methods
constructImplicitEuler- The 1st order Implicit Euler method.constructMidpointRule- The 2nd order Midpoint method.constructTrapezoidalRule- The 2nd order Trapezoidal rule (2nd order LobattoIIIA)constructLobattoIIIA4- The 4th order LobattoIIIAconstructLobattoIIIB2- The 2nd order LobattoIIIBconstructLobattoIIIB4- The 4th order LobattoIIIBconstructLobattoIIIC2- The 2nd order LobattoIIICconstructLobattoIIIC4- The 4th order LobattoIIICconstructLobattoIIICStar2- The 2nd order LobattoIIIC*constructLobattoIIICStar4- The 4th order LobattoIIIC*constructLobattoIIID2- The 2nd order LobattoIIIDconstructLobattoIIID4- The 4th order LobattoIIIDconstructRadauIA3- The 3rd order RadauIAconstructRadauIA5- The 5th order RadauIAconstructRadauIIA3- The 3rd order RadauIIAconstructRadauIIA5- The 5th order RadauIIA
Tableau Methods
DiffEqDevTools.stability_region — Functionstability_region(z,tab::ODERKTableau)
Calculates the stability function from the tableau at z. Stable if <1.
\[r(z) = 1 + z bᵀ(I - zA)⁻¹ e\]
where e denotes a vector of ones.
stability_region(tab::ODERKTableau; initial_guess=-3.0)
Calculates the length of the stability region in the real axis.
OrdinaryDiffEq.ODE_DEFAULT_TABLEAU — ConstantODEDEFAULTTABLEAU
Sets the default tableau for the ODE solver. Currently Dormand-Prince 4/5.
Explicit Tableaus
DiffEqDevTools.constructEuler — FunctionEuler's method.
DiffEqDevTools.constructRalston — FunctionRalston's Order 2 method.
DiffEqDevTools.constructHeun — FunctionHeun's Order 2 method.
DiffEqDevTools.constructKutta3 — FunctionKutta's Order 3 method.
Missing docstring for OrdinaryDiffEq.constructBS3. Check Documenter's build log for details.
DiffEqDevTools.constructBogakiShampine3 — FunctionconstructBogakiShampine3()
Constructs the tableau object for the Bogakai-Shampine Order 2/3 method.
DiffEqDevTools.constructRK4 — FunctionClassic RK4 method.
DiffEqDevTools.constructRK438Rule — FunctionClassic RK4 3/8's rule method.
DiffEqDevTools.constructRKF4 — FunctionRunge-Kutta-Fehberg Order 4/3
DiffEqDevTools.constructRKF5 — FunctionRunge-Kutta-Fehlberg Order 4/5 method.
DiffEqDevTools.constructCashKarp — FunctionconstructCashKarp()
Constructs the tableau object for the Cash-Karp Order 4/5 method.
Missing docstring for DiffEqDevTools.constructDormandPrince. Check Documenter's build log for details.
Missing docstring for OrdinaryDiffEq.constructBS5. Check Documenter's build log for details.
DiffEqDevTools.constructPapakostasPapaGeorgiou5 — FunctionS.N. Papakostas and G. PapaGeorgiou higher error more stable
A Family of Fifth-order Runge-Kutta Pairs, by S.N. Papakostas and G. PapaGeorgiou, Mathematics of Computation,Volume 65, Number 215, July 1996, Pages 1165-1181.
DiffEqDevTools.constructPapakostasPapaGeorgiou52 — FunctionS.N. Papakostas and G. PapaGeorgiou less stable lower error Strictly better than DP5
A Family of Fifth-order Runge-Kutta Pairs, by S.N. Papakostas and G. PapaGeorgiou, Mathematics of Computation,Volume 65, Number 215, July 1996, Pages 1165-1181.
DiffEqDevTools.constructTsitouras5 — FunctionRunge–Kutta pairs of orders 5(4) using the minimal set of simplifying assumptions, by Ch. Tsitouras, TEI of Chalkis, Dept. of Applied Sciences, GR34400, Psahna, Greece.
DiffEqDevTools.constructLutherKonen5 — FunctionLuther and Konen's First Order 5 Some Fifth-Order Classical Runge Kutta Formulas, H.A.Luther and H.P.Konen, Siam Review, Vol. 3, No. 7, (Oct., 1965) pages 551-558.
DiffEqDevTools.constructLutherKonen52 — FunctionLuther and Konen's Second Order 5 Some Fifth-Order Classical Runge Kutta Formulas, H.A.Luther and H.P.Konen, Siam Review, Vol. 3, No. 7, (Oct., 1965) pages 551-558.
DiffEqDevTools.constructLutherKonen53 — FunctionLuther and Konen's Third Order 5 Some Fifth-Order Classical Runge Kutta Formulas, H.A.Luther and H.P.Konen, Siam Review, Vol. 3, No. 7, (Oct., 1965) pages 551-558.
DiffEqDevTools.constructRungeFirst5 — FunctionRunge's First Order 5 method
DiffEqDevTools.constructLawson5 — FunctionLawson's 5th order scheme
An Order Five Runge Kutta Process with Extended Region of Stability, J. Douglas Lawson, Siam Journal on Numerical Analysis, Vol. 3, No. 4, (Dec., 1966) pages 593-597
DiffEqDevTools.constructSharpSmart5 — FunctionExplicit Runge-Kutta Pairs with One More Derivative Evaluation than the Minimum, by P.W.Sharp and E.Smart, Siam Journal of Scientific Computing, Vol. 14, No. 2, pages. 338-348, March 1993.
DiffEqDevTools.constructBogakiShampine5 — FunctionAn Efficient Runge-Kutta (4,5) Pair by P.Bogacki and L.F.Shampine Computers and Mathematics with Applications, Vol. 32, No. 6, 1996, pages 15 to 28
DiffEqDevTools.constructCassity5 — FunctionCassity's Order 5 method
DiffEqDevTools.constructButcher6 — FunctionButcher's First Order 6 method
On Runge-Kutta Processes of High Order, by J. C. Butcher, Journal of the Australian Mathematical Society, Vol. 4, (1964), pages 179 to 194
DiffEqDevTools.constructButcher62 — FunctionButcher's Second Order 6 method
On Runge-Kutta Processes of High Order, by J. C. Butcher, Journal of the Australian Mathematical Society, Vol. 4, (1964), pages 179 to 194
DiffEqDevTools.constructButcher63 — FunctionButcher's Third Order 6
On Runge-Kutta Processes of High Order, by J. C. Butcher, Journal of the Australian Mathematical Society, Vol. 4, (1964), pages 179 to 194
DiffEqDevTools.constructVernerRobust6 — FunctionFrom Verner's Website
DiffEqDevTools.constructTanakaKasugaYamashitaYazaki6A — FunctionTanakaKasugaYamashitaYazaki Order 6 A
On the Optimization of Some Eight-stage Sixth-order Explicit Runge-Kutta Method, by M. Tanaka, K. Kasuga, S. Yamashita and H. Yazaki, Journal of the Information Processing Society of Japan, Vol. 34, No. 1 (1993), pages 62 to 74.
DiffEqDevTools.constructTanakaKasugaYamashitaYazaki6B — FunctionconstructTanakaKasugaYamashitaYazaki Order 6 B
On the Optimization of Some Eight-stage Sixth-order Explicit Runge-Kutta Method, by M. Tanaka, K. Kasuga, S. Yamashita and H. Yazaki, Journal of the Information Processing Society of Japan, Vol. 34, No. 1 (1993), pages 62 to 74.
DiffEqDevTools.constructTanakaKasugaYamashitaYazaki6C — FunctionconstructTanakaKasugaYamashitaYazaki Order 6 C
On the Optimization of Some Eight-stage Sixth-order Explicit Runge-Kutta Method, by M. Tanaka, K. Kasuga, S. Yamashita and H. Yazaki, Journal of the Information Processing Society of Japan, Vol. 34, No. 1 (1993), pages 62 to 74.
DiffEqDevTools.constructTanakaKasugaYamashitaYazaki6D — FunctionconstructTanakaKasugaYamashitaYazaki Order 6 D
On the Optimization of Some Eight-stage Sixth-order Explicit Runge-Kutta Method, by M. Tanaka, K. Kasuga, S. Yamashita and H. Yazaki, Journal of the Information Processing Society of Japan, Vol. 34, No. 1 (1993), pages 62 to 74.
DiffEqDevTools.constructHuta6 — FunctionAnton Hutas First Order 6 method
Une amélioration de la méthode de Runge-Kutta-Nyström pour la résolution numérique des équations différentielles du premièr ordre, by Anton Huta, Acta Fac. Nat. Univ. Comenian Math., Vol. 1, pages 201-224 (1956).
DiffEqDevTools.constructHuta62 — FunctionAnton Hutas Second Order 6 method
Une amélioration de la méthode de Runge-Kutta-Nyström pour la résolution numérique des équations différentielles du premièr ordre, by Anton Huta, Acta Fac. Nat. Univ. Comenian Math., Vol. 1, pages 201-224 (1956).
DiffEqDevTools.constructVerner6 — FunctionVerner Order 5/6 method
A Contrast of a New RK56 pair with DP56, by Jim Verner, Department of Mathematics. Simon Fraser University, Burnaby, Canada, 2006.
DiffEqDevTools.constructDormandPrince6 — FunctionDormand-Prince Order 5//6 method
P.J. Prince and J. R. Dormand, High order embedded Runge-Kutta formulae, Journal of Computational and Applied Mathematics . 7 (1981), pp. 67-75.
DiffEqDevTools.constructSharpVerner6 — FunctionSharp-Verner Order 5/6 method
Completely Imbedded Runge-Kutta Pairs, by P. W. Sharp and J. H. Verner, SIAM Journal on Numerical Analysis, Vol. 31, No. 4. (Aug., 1994), pages. 1169 to 1190.
Missing docstring for DiffEqDevTools.constructVern6. Check Documenter's build log for details.
DiffEqDevTools.constructClassicVerner6 — FunctionEXPLICIT RUNGE-KUTFA METHODS WITH ESTIMATES OF THE LOCAL TRUNCATION ERROR
DiffEqDevTools.constructChummund6 — FunctionChummund's First Order 6 method
A three-dimensional family of seven-step Runge-Kutta methods of order 6, by G. M. Chammud (Hammud), Numerical Methods and programming, 2001, Vol.2, 2001, pages 159-166 (Advanced Computing Scientific journal published by the Research Computing Center of the Lomonosov Moscow State Univeristy)
DiffEqDevTools.constructChummund62 — FunctionChummund's Second Order 6 method
A three-dimensional family of seven-step Runge-Kutta methods of order 6, by G. M. Chammud (Hammud), Numerical Methods and programming, 2001, Vol.2, 2001, pages 159-166 (Advanced Computing Scientific journal published by the Research Computing Center of the Lomonosov Moscow State Univeristy)
DiffEqDevTools.constructPapakostas6 — FunctionPapakostas's Order 6
On Phase-Fitted modified Runge-Kutta Pairs of order 6(5), by Ch. Tsitouras and I. Th. Famelis, International Conference of Numerical Analysis and Applied Mathematics, Crete, (2006)
DiffEqDevTools.constructLawson6 — FunctionLawson's Order 6
An Order 6 Runge-Kutta Process with an Extended Region of Stability, by J. D. Lawson, Siam Journal on Numerical Analysis, Vol. 4, No. 4 (Dec. 1967) pages 620-625.
DiffEqDevTools.constructTsitourasPapakostas6 — FunctionTsitouras-Papakostas's Order 6
Cheap Error Estimation for Runge-Kutta methods, by Ch. Tsitouras and S.N. Papakostas, Siam Journal on Scientific Computing, Vol. 20, Issue 6, Nov 1999.
DiffEqDevTools.constructDormandLockyerMcCorriganPrince6 — FunctionDormandLockyerMcCorriganPrince Order 6 Global Error Estimation
Global Error estimation with Runge-Kutta triples, by J.R.Dormand, M.A.Lockyer, N.E.McCorrigan and P.J.Prince, Computers and Mathematics with Applications, 18 (1989) pages 835-846.
DiffEqDevTools.constructVernerEfficient6 — FunctionFrom Verner's Website
DiffEqDevTools.constructMikkawyEisa — FunctionMikkawy-Eisa Order 6
A general four-parameter non-FSAL embedded Runge–Kutta algorithm of orders 6 and 4 in seven stages, by M.E.A. El-Mikkawy and M.M.M. Eisa, Applied Mathematics and Computation, Vol. 143, No. 2, (2003) pages 259 to 267.
DiffEqDevTools.constructVernerEfficient7 — FunctionFrom Verner's website
DiffEqDevTools.constructClassicVerner7 — FunctionEXPLICIT RUNGE-KUTFA METHODS WITH ESTIMATES OF THE LOCAL TRUNCATION ERROR
DiffEqDevTools.constructSharpVerner7 — FunctionCompletely Imbedded Runge-Kutta Pairs, by P.W.Sharp and J.H.Verner, Siam Journal on Numerical Analysis, Vol.31, No.4. (August 1994) pages 1169-1190.
DiffEqDevTools.constructTanakaYamashitaStable7 — FunctionOn the Optimization of Some Nine-Stage Seventh-order Runge-Kutta Method, by M. Tanaka, S. Muramatsu and S. Yamashita, Information Processing Society of Japan, Vol. 33, No. 12 (1992) pages 1512-1526.
DiffEqDevTools.constructSharpSmart7 — FunctionExplicit Runge-Kutta Pairs with One More Derivative Evaluation than the Minimum, by P.W.Sharp and E.Smart, Siam Journal of Scientific Computing, Vol. 14, No. 2, pages. 338-348, March 1993.
DiffEqDevTools.constructTanakaYamashitaEfficient7 — FunctionOn the Optimization of Some Nine-Stage Seventh-order Runge-Kutta Method, by M. Tanaka, S. Muramatsu and S. Yamashita, Information Processing Society of Japan, Vol. 33, No. 12 (1992) pages 1512-1526.
DiffEqDevTools.constructVernerRobust7 — FunctionFrom Verner's website
Missing docstring for OrdinaryDiffEq.constructTanYam7. Check Documenter's build log for details.
DiffEqDevTools.constructEnrightVerner7 — FunctionThe Relative Efficiency of Alternative Defect Control Schemes for High-Order Continuous Runge-Kutta Formulas W. H. Enright SIAM Journal on Numerical Analysis, Vol. 30, No. 5. (Oct., 1993), pp. 1419-1445.
DiffEqDevTools.constructDormandPrince8 — FunctionconstructDormandPrice8()
Constructs the tableau object for the Dormand-Prince Order 6/8 method.
DiffEqDevTools.constructRKF8 — FunctionconstructRKF8()
Constructs the tableau object for the Runge-Kutta-Fehlberg Order 7/8 method.
DiffEqDevTools.constructCooperVerner8 — FunctionSome Explicit Runge-Kutta Methods of High Order, by G. J. Cooper and J. H. Verner, SIAM Journal on Numerical Analysis, Vol. 9, No. 3, (September 1972), pages 389 to 405
DiffEqDevTools.constructCooperVerner82 — FunctionSome Explicit Runge-Kutta Methods of High Order, by G. J. Cooper and J. H. Verner, SIAM Journal on Numerical Analysis, Vol. 9, No. 3, (September 1972), pages 389 to 405
DiffEqDevTools.constructTsitourasPapakostas8 — FunctionCheap Error Estimation for Runge-Kutta methods, by Ch. Tsitouras and S.N. Papakostas, Siam Journal on Scientific Computing, Vol. 20, Issue 6, Nov 1999.
DiffEqDevTools.constructEnrightVerner8 — FunctionThe Relative Efficiency of Alternative Defect Control Schemes for High-Order Continuous Runge-Kutta Formulas W. H. Enright SIAM Journal on Numerical Analysis, Vol. 30, No. 5. (Oct., 1993), pp. 1419-1445.
DiffEqDevTools.constructdverk78 — FunctionJim Verner's "Maple" (dverk78)
DiffEqDevTools.constructClassicVerner8 — FunctionEXPLICIT RUNGE-KUTFA METHODS WITH ESTIMATES OF THE LOCAL TRUNCATION ERROR
DiffEqDevTools.constructDormandPrince8_64bit — FunctionconstructDormandPrice8_64bit()
Constructs the tableau object for the Dormand-Prince Order 6/8 method with the approximated coefficients from the paper. This works until below 64-bit precision.
DiffEqDevTools.constructCurtis8 — FunctionAn Eighth Order Runge-Kutta process with Eleven Function Evaluations per Step, by A. R. Curtis, Numerische Mathematik, Vol. 16, No. 3 (1970), pages 268 to 277
Missing docstring for OrdinaryDiffEq.constructTsitPap8. Check Documenter's build log for details.
DiffEqDevTools.constructSharp9 — FunctionJournal of Applied Mathematics & Decision Sciences, 4(2), 183-192 (2000), "High order explicit Runge-Kutta pairs for ephemerides of the Solar System and the Moon".
DiffEqDevTools.constructTsitouras9 — FunctionOptimized explicit Runge-Kutta pairs of order 9(8), by Ch. Tsitouras, Applied Numerical Mathematics, 38 (2001) 123-134.
DiffEqDevTools.constructTsitouras92 — FunctionOptimized explicit Runge-Kutta pairs of order 9(8), by Ch. Tsitouras, Applied Numerical Mathematics, 38 (2001) 123-134.
DiffEqDevTools.constructVernerEfficient9 — FunctionFrom Verner's Webiste
Missing docstring for OrdinaryDiffEq.constructVern9. Check Documenter's build log for details.
DiffEqDevTools.constructVerner916 — FunctionVerner 1991 First Order 5/6 method
Some Ruge-Kutta Formula Pairs, by J.H.Verner, SIAM Journal on Numerical Analysis, Vol. 28, No. 2 (April 1991), pages 496 to 511.
DiffEqDevTools.constructVerner9162 — FunctionVerner 1991 Second Order 5/6 method
Some Ruge-Kutta Formula Pairs, by J.H.Verner, SIAM Journal on Numerical Analysis, Vol. 28, No. 2 (April 1991), pages 496 to 511.
DiffEqDevTools.constructVernerRobust9 — FunctionFrom Verner's Webiste
DiffEqDevTools.constructFeagin10 — FunctionFeagin10 in Tableau form
Missing docstring for DiffEqDevTools.constructFeagin10Tableau. Check Documenter's build log for details.
DiffEqDevTools.constructOno10 — FunctionOno10
DiffEqDevTools.constructCurtis10 — FunctionHigh-order Explicit Runge-Kutta Formulae, Their uses, and Limitations, A.R.Curtis, J. Inst. Maths Applics (1975) 16, 35-55.
DiffEqDevTools.constructHairer10 — FunctionA Runge-Kutta Method of Order 10, E. Hairer, J. Inst. Maths Applics (1978) 21, 47-59.
DiffEqDevTools.constructBaker10 — FunctionTom Baker, University of Teeside. Part of RK-Aid http://www.scm.tees.ac.uk/users/u0000251/research/researcht.htm http://www.scm.tees.ac.uk/users/u0000251/j.r.dormand/t.baker/rk10921m/rk10921m
DiffEqDevTools.constructFeagin12 — FunctionTableau form of Feagin12
DiffEqDevTools.constructOno12 — FunctionOn the 25 stage 12th order explicit Runge-Kutta method, by Hiroshi Ono. Transactions of the Japan Society for Industrial and applied Mathematics, Vol. 6, No. 3, (2006) pages 177 to 186
Missing docstring for DiffEqDevTools.constructFeagin12Tableau. Check Documenter's build log for details.
DiffEqDevTools.constructFeagin14 — FunctionTableau form of Feagin14
Missing docstring for DiffEqDevTools.constructFeagin14Tableau. Check Documenter's build log for details.
Implicit Tableaus
DiffEqDevTools.constructImplicitEuler — FunctionImplicit Euler Method
DiffEqDevTools.constructMidpointRule — FunctionOrder 2 Midpoint Method
DiffEqDevTools.constructTrapezoidalRule — FunctionOrder 2 Trapezoidal Rule (LobattoIIIA2)
DiffEqDevTools.constructLobattoIIIA4 — FunctionLobattoIIIA Order 4 method
DiffEqDevTools.constructLobattoIIIB2 — FunctionLobattoIIIB Order 2 method
DiffEqDevTools.constructLobattoIIIB4 — FunctionLobattoIIIB Order 4 method
DiffEqDevTools.constructLobattoIIIC2 — FunctionLobattoIIIC Order 2 method
DiffEqDevTools.constructLobattoIIIC4 — FunctionLobattoIIIC Order 4 method
DiffEqDevTools.constructLobattoIIICStar2 — FunctionLobattoIIIC* Order 2 method
DiffEqDevTools.constructLobattoIIICStar4 — FunctionLobattoIIIC* Order 4 method
DiffEqDevTools.constructLobattoIIID2 — FunctionLobattoIIID Order 2 method
DiffEqDevTools.constructLobattoIIID4 — FunctionLobattoIIID Order 4 method
DiffEqDevTools.constructGL2 — FunctionGauss-Legendre Order 2.
DiffEqDevTools.constructGL4 — FunctionGauss-Legendre Order 4.
DiffEqDevTools.constructGL6 — FunctionGauss-Legendre Order 6.
DiffEqDevTools.constructRadauIA3 — FunctionRadauIA Order 3 method
DiffEqDevTools.constructRadauIA5 — FunctionRadauIA Order 5 method
DiffEqDevTools.constructRadauIIA3 — FunctionRadauIIA Order 3 method
DiffEqDevTools.constructRadauIIA5 — FunctionRadauIIA Order 5 method