Code Optimization for Differential Equations
See this FAQ for information on common pitfalls and how to improve performance.
Code Optimization in Julia
Before starting this tutorial, we recommend the reader to check out one of the many tutorials for optimization Julia code. The following is an incomplete list:
- The Julia Performance Tips
- MIT 18.337 Course Notes on Optimizing Serial Code
- What scientists must know about hardware to write fast code
User-side optimizations are important because, for sufficiently difficult problems, most time will be spent inside your f
function, the function you are trying to solve. “Efficient” integrators are those that reduce the required number of f
calls to hit the error tolerance. The main ideas for optimizing your DiffEq code, or any Julia function, are the following:
- Make it non-allocating
- Use StaticArrays for small arrays
- Use broadcast fusion
- Make it type-stable
- Reduce redundant calculations
- Make use of BLAS calls
- Optimize algorithm choice
We'll discuss these strategies in the context of differential equations. Let's start with small systems.
Example Accelerating a Non-Stiff Equation: The Lorenz Equation
Let's take the classic Lorenz system. Let's start by naively writing the system in its out-of-place form:
function lorenz(u, p, t)
dx = 10.0 * (u[2] - u[1])
dy = u[1] * (28.0 - u[3]) - u[2]
dz = u[1] * u[2] - (8 / 3) * u[3]
[dx, dy, dz]
end
lorenz (generic function with 1 method)
Here, lorenz
returns an object, [dx,dy,dz]
, which is created within the body of lorenz
.
This is a common code pattern from high-level languages like MATLAB, SciPy, or R's deSolve. However, the issue with this form is that it allocates a vector, [dx,dy,dz]
, at each step. Let's benchmark the solution process with this choice of function:
import DifferentialEquations as DE, BenchmarkTools as BT
u0 = [1.0; 0.0; 0.0]
tspan = (0.0, 100.0)
prob = DE.ODEProblem(lorenz, u0, tspan)
BT.@btime DE.solve(prob, DE.Tsit5());
3.282 ms (192104 allocations: 7.44 MiB)
The BenchmarkTools.jl
package's BT.@benchmark
runs the code multiple times to get an accurate measurement. The minimum time is the time it takes when your OS and other background processes aren't getting in the way. Notice that in this case it takes about 5ms to solve and allocates around 11.11 MiB. However, if we were to use this inside of a real user code, we'd see a lot of time spent doing garbage collection (GC) to clean up all the arrays we made. Even if we turn off saving, we have these allocations.
BT.@btime DE.solve(prob, DE.Tsit5(); save_everystep = false);
2.767 ms (169897 allocations: 6.49 MiB)
The problem, of course, is that arrays are created every time our derivative function is called. This function is called multiple times per step and is thus the main source of memory usage. To fix this, we can use the in-place form to ***make our code non-allocating***:
function lorenz!(du, u, p, t)
du[1] = 10.0 * (u[2] - u[1])
du[2] = u[1] * (28.0 - u[3]) - u[2]
du[3] = u[1] * u[2] - (8 / 3) * u[3]
nothing
end
lorenz! (generic function with 1 method)
Here, instead of creating an array each time, we utilized the cache array du
. When the in-place form is used, DifferentialEquations.jl takes a different internal route that minimizes the internal allocations as well.
Notice that nothing is returned. When in in-place form, the ODE solver ignores the return. Instead, make sure that the original du
array is mutated instead of constructing a new array
When we benchmark this function, we will see quite a difference.
u0 = [1.0; 0.0; 0.0]
tspan = (0.0, 100.0)
prob = DE.ODEProblem(lorenz!, u0, tspan)
BT.@btime DE.solve(prob, DE.Tsit5());
755.276 μs (23214 allocations: 1013.34 KiB)
BT.@btime DE.solve(prob, DE.Tsit5(); save_everystep = false);
362.438 μs (71 allocations: 3.89 KiB)
There is a 16x time difference just from that change! Notice there are still some allocations and this is due to the construction of the integration cache. But this doesn't scale with the problem size:
tspan = (0.0, 500.0) # 5x longer than before
prob = DE.ODEProblem(lorenz!, u0, tspan)
BT.@btime DE.solve(prob, DE.Tsit5(); save_everystep = false);
1.872 ms (71 allocations: 3.89 KiB)
Since that's all setup allocations, the user-side optimization is complete.
Further Optimizations of Small Non-Stiff ODEs with StaticArrays
Allocations are only expensive if they are “heap allocations”. For a more in-depth definition of heap allocations, there are many sources online. But a good working definition is that heap allocations are variable-sized slabs of memory which have to be pointed to, and this pointer indirection costs time. Additionally, the heap has to be managed, and the garbage controllers has to actively keep track of what's on the heap.
However, there's an alternative to heap allocations, known as stack allocations. The stack is statically-sized (known at compile time) and thus its accesses are quick. Additionally, the exact block of memory is known in advance by the compiler, and thus re-using the memory is cheap. This means that allocating on the stack has essentially no cost!
Arrays have to be heap allocated because their size (and thus the amount of memory they take up) is determined at runtime. But there are structures in Julia which are stack-allocated. struct
s for example are stack-allocated “value-type”s. Tuple
s are a stack-allocated collection. The most useful data structure for DiffEq though is the StaticArray
from the package StaticArrays.jl. These arrays have their length determined at compile-time. They are created using macros attached to normal array expressions, for example:
import StaticArrays
A = StaticArrays.SA[2.0, 3.0, 5.0]
typeof(A) # StaticArrays.SVector{3, Float64} (alias for StaticArrays.SArray{Tuple{3}, Float64, 1, 3})
SVector{3, Float64} (alias for StaticArraysCore.SArray{Tuple{3}, Float64, 1, 3})
Notice that the 3
after StaticArrays.SVector
gives the size of the StaticArrays.SVector
. It cannot be changed. Additionally, StaticArrays.SVector
s are immutable, so we have to create a new StaticArrays.SVector
to change values. But remember, we don't have to worry about allocations because this data structure is stack-allocated. SArray
s have numerous extra optimizations as well: they have fast matrix multiplication, fast QR factorizations, etc. which directly make use of the information about the size of the array. Thus, when possible, they should be used.
Unfortunately, static arrays can only be used for sufficiently small arrays. After a certain size, they are forced to heap allocate after some instructions and their compile time balloons. Thus, static arrays shouldn't be used if your system has more than ~20 variables. Additionally, only the native Julia algorithms can fully utilize static arrays.
Let's ***optimize lorenz
using static arrays***. Note that in this case, we want to use the out-of-place allocating form, but this time we want to output a static array:
function lorenz_static(u, p, t)
dx = 10.0 * (u[2] - u[1])
dy = u[1] * (28.0 - u[3]) - u[2]
dz = u[1] * u[2] - (8 / 3) * u[3]
StaticArrays.SA[dx, dy, dz]
end
lorenz_static (generic function with 1 method)
To make the solver internally use static arrays, we simply give it a static array as the initial condition:
u0 = StaticArrays.SA[1.0, 0.0, 0.0]
tspan = (0.0, 100.0)
prob = DE.ODEProblem(lorenz_static, u0, tspan)
BT.@btime DE.solve(prob, DE.Tsit5());
268.098 μs (2615 allocations: 392.71 KiB)
BT.@btime DE.solve(prob, DE.Tsit5(); save_everystep = false);
193.299 μs (25 allocations: 2.03 KiB)
And that's pretty much all there is to it. With static arrays, you don't have to worry about allocating, so use operations like *
and don't worry about fusing operations (discussed in the next section). Do “the vectorized code” of R/MATLAB/Python and your code in this case will be fast, or directly use the numbers/values.
Example Accelerating a Stiff Equation: the Robertson Equation
For these next examples, let's solve the Robertson equations (also known as ROBER):
\[\begin{aligned} \frac{dy_1}{dt} &= -0.04y₁ + 10^4 y_2 y_3 \\ \frac{dy_2}{dt} &= 0.04 y_1 - 10^4 y_2 y_3 - 3*10^7 y_{2}^2 \\ \frac{dy_3}{dt} &= 3*10^7 y_{2}^2 \\ \end{aligned}\]
Given that these equations are stiff, non-stiff ODE solvers like DE.Tsit5
or DE.Vern9
will fail to solve these equations. The automatic algorithm will detect this and automatically switch to something more robust to handle these issues. For example:
import DifferentialEquations as DE
import Plots
function rober!(du, u, p, t)
y₁, y₂, y₃ = u
k₁, k₂, k₃ = p
du[1] = -k₁ * y₁ + k₃ * y₂ * y₃
du[2] = k₁ * y₁ - k₂ * y₂^2 - k₃ * y₂ * y₃
du[3] = k₂ * y₂^2
nothing
end
prob = DE.ODEProblem(rober!, [1.0, 0.0, 0.0], (0.0, 1e5), [0.04, 3e7, 1e4])
sol = DE.solve(prob)
Plots.plot(sol, tspan = (1e-2, 1e5), xscale = :log10)
import BenchmarkTools as BT
BT.@btime DE.solve(prob);
103.470 μs (1739 allocations: 124.88 KiB)
Choosing a Good Solver
Choosing a good solver is required for getting top-notch speed. General recommendations can be found on the solver page (for example, the ODE Solver Recommendations). The current recommendations can be simplified to a Rosenbrock method (DE.Rosenbrock23
or DE.Rodas5
) for smaller (<50 ODEs) problems, ESDIRK methods for slightly larger (DE.TRBDF2
or DE.KenCarp4
for <2000 ODEs), and DE.QNDF
for even larger problems. lsoda
from LSODA.jl is sometimes worth a try for the medium-sized category.
More details on the solver to choose can be found by benchmarking. See the SciMLBenchmarks to compare many solvers on many problems.
From this, we try the recommendation of DE.Rosenbrock23()
for stiff ODEs at default tolerances:
BT.@btime DE.solve(prob, DE.Rosenbrock23());
75.070 μs (635 allocations: 31.66 KiB)
Declaring Jacobian Functions
In order to reduce the Jacobian construction cost, one can describe a Jacobian function by using the jac
argument for the DE.ODEFunction
. First we have to derive the Jacobian $\frac{df_i}{du_j}$ which is J[i,j]
. From this, we get:
function rober_jac!(J, u, p, t)
y₁, y₂, y₃ = u
k₁, k₂, k₃ = p
J[1, 1] = k₁ * -1
J[2, 1] = k₁
J[3, 1] = 0
J[1, 2] = y₃ * k₃
J[2, 2] = y₂ * k₂ * -2 + y₃ * k₃ * -1
J[3, 2] = y₂ * 2 * k₂
J[1, 3] = k₃ * y₂
J[2, 3] = k₃ * y₂ * -1
J[3, 3] = 0
nothing
end
f! = DE.ODEFunction(rober!, jac = rober_jac!)
prob_jac = DE.ODEProblem(f!, [1.0, 0.0, 0.0], (0.0, 1e5), (0.04, 3e7, 1e4))
ODEProblem with uType Vector{Float64} and tType Float64. In-place: true
Non-trivial mass matrix: false
timespan: (0.0, 100000.0)
u0: 3-element Vector{Float64}:
1.0
0.0
0.0
BT.@btime DE.solve(prob_jac, DE.Rosenbrock23());
54.980 μs (561 allocations: 29.08 KiB)
Automatic Derivation of Jacobian Functions
But that was hard! If you want to take the symbolic Jacobian of numerical code, we can make use of ModelingToolkit.jl to symbolic-ify the numerical code and do the symbolic calculation and return the Julia code for this.
import ModelingToolkit as MTK
de = MTK.complete(MTK.modelingtoolkitize(prob))
\[ \begin{align} \frac{\mathrm{d} \mathtt{x_1}\left( t \right)}{\mathrm{d}t} &= - \mathtt{x_1}\left( t \right) \mathtt{\alpha_1} + \mathtt{x_2}\left( t \right) \mathtt{x_3}\left( t \right) \mathtt{\alpha_3} \\ \frac{\mathrm{d} \mathtt{x_2}\left( t \right)}{\mathrm{d}t} &= \mathtt{x_1}\left( t \right) \mathtt{\alpha_1} - \left( \mathtt{x_2}\left( t \right) \right)^{2} \mathtt{\alpha_2} - \mathtt{x_2}\left( t \right) \mathtt{x_3}\left( t \right) \mathtt{\alpha_3} \\ \frac{\mathrm{d} \mathtt{x_3}\left( t \right)}{\mathrm{d}t} &= \left( \mathtt{x_2}\left( t \right) \right)^{2} \mathtt{\alpha_2} \end{align} \]
We can tell it to compute the Jacobian if we want to see the code:
MTK.generate_jacobian(de)[2] # Second is in-place
:(function (ˍ₋out, __mtk_arg_1, ___mtkparameters___, t)
#= /root/.cache/julia-buildkite-plugin/depots/0185fce3-4489-413a-a934-123dd653ef61/packages/Symbolics/egyPz/src/build_function.jl:368 =# @inbounds begin
#= /root/.cache/julia-buildkite-plugin/depots/0185fce3-4489-413a-a934-123dd653ef61/packages/Symbolics/egyPz/src/build_function.jl:368 =#
begin
#= /root/.cache/julia-buildkite-plugin/depots/0185fce3-4489-413a-a934-123dd653ef61/packages/SymbolicUtils/aooYZ/src/code.jl:409 =#
#= /root/.cache/julia-buildkite-plugin/depots/0185fce3-4489-413a-a934-123dd653ef61/packages/SymbolicUtils/aooYZ/src/code.jl:410 =#
#= /root/.cache/julia-buildkite-plugin/depots/0185fce3-4489-413a-a934-123dd653ef61/packages/SymbolicUtils/aooYZ/src/code.jl:411 =#
begin
__mtk_arg_2 = ___mtkparameters___[1]
__mtk_arg_3 = ___mtkparameters___[2]
begin
#= /root/.cache/julia-buildkite-plugin/depots/0185fce3-4489-413a-a934-123dd653ef61/packages/SymbolicUtils/aooYZ/src/code.jl:464 =# @inbounds begin
#= /root/.cache/julia-buildkite-plugin/depots/0185fce3-4489-413a-a934-123dd653ef61/packages/SymbolicUtils/aooYZ/src/code.jl:460 =#
ˍ₋out[1] = (*)(-1, __mtk_arg_2[2])
ˍ₋out[2] = __mtk_arg_2[2]
ˍ₋out[3] = 0
ˍ₋out[4] = (*)(__mtk_arg_1[3], __mtk_arg_2[1])
ˍ₋out[5] = (+)((*)((*)(-2, __mtk_arg_1[2]), __mtk_arg_2[3]), (*)((*)(-1, __mtk_arg_1[3]), __mtk_arg_2[1]))
ˍ₋out[6] = (*)((*)(2, __mtk_arg_1[2]), __mtk_arg_2[3])
ˍ₋out[7] = (*)(__mtk_arg_1[2], __mtk_arg_2[1])
ˍ₋out[8] = (*)((*)(-1, __mtk_arg_1[2]), __mtk_arg_2[1])
ˍ₋out[9] = 0
#= /root/.cache/julia-buildkite-plugin/depots/0185fce3-4489-413a-a934-123dd653ef61/packages/SymbolicUtils/aooYZ/src/code.jl:462 =#
ˍ₋out
end
end
end
end
end
end)
Now let's use that to give the analytical solution Jacobian:
prob_jac2 = DE.ODEProblem(de, [], (0.0, 1e5); jac = true)
ODEProblem with uType Vector{Float64} and tType Float64. In-place: true
Initialization status: FULLY_DETERMINED
Non-trivial mass matrix: false
timespan: (0.0, 100000.0)
u0: 3-element Vector{Float64}:
1.0
0.0
0.0
BT.@btime DE.solve(prob_jac2);
93.719 μs (1491 allocations: 110.03 KiB)
See the ModelingToolkit.jl documentation for more details.
Accelerating Small ODE Solves with Static Arrays
If the ODE is sufficiently small (<20 ODEs or so), using StaticArrays.jl for the state variables can greatly enhance the performance. This is done by making u0
a StaticArray
and writing an out-of-place non-mutating dispatch for static arrays, for the ROBER problem, this looks like:
import StaticArrays
function rober_static(u, p, t)
y₁, y₂, y₃ = u
k₁, k₂, k₃ = p
du1 = -k₁ * y₁ + k₃ * y₂ * y₃
du2 = k₁ * y₁ - k₂ * y₂^2 - k₃ * y₂ * y₃
du3 = k₂ * y₂^2
StaticArrays.SA[du1, du2, du3]
end
prob = DE.ODEProblem(rober_static, StaticArrays.SA[1.0, 0.0, 0.0], (0.0, 1e5), StaticArrays.SA[0.04, 3e7, 1e4])
sol = DE.solve(prob, DE.Rosenbrock23())
retcode: Success
Interpolation: specialized 2nd order "free" stiffness-aware interpolation
t: 61-element Vector{Float64}:
0.0
3.196206628740808e-5
0.00014400709669791316
0.00025605212710841824
0.00048593872520561496
0.0007179482298405134
0.0010819240431281
0.0014801655696439716
0.0020679567767069723
0.0028435846274559506
⋮
25371.934242574636
30784.11997687391
37217.42637183451
44850.61378119757
53893.69155452613
64593.73799781129
77241.71960460565
92180.81944906656
100000.0
u: 61-element Vector{StaticArraysCore.SVector{3, Float64}}:
[1.0, 0.0, 0.0]
[0.9999987215181657, 1.2780900152625978e-6, 3.9181897521319503e-10]
[0.9999942397327672, 5.718510591908378e-6, 4.175664083814195e-8]
[0.9999897579685716, 9.992106860321925e-6, 2.4992456809854223e-7]
[0.99998056266788, 1.7833624284594367e-5, 1.6037078354141815e-6]
[0.9999712826600025, 2.403488607694387e-5, 4.6824539206438825e-6]
[0.9999567250106862, 3.0390689558961382e-5, 1.2884299754832173e-5]
[0.999940798607161, 3.388427373871301e-5, 2.531711910029394e-5]
[0.9999172960308617, 3.583508668595173e-5, 4.686888245237194e-5]
[0.9998862913719596, 3.641240165367128e-5, 7.729622638673522e-5]
⋮
[0.055635077310009065, 2.3546320422346706e-7, 0.944364687226786]
[0.0479253487640473, 2.012149504322489e-7, 0.9520744500210007]
[0.041233421490035026, 1.719278816689166e-7, 0.9587664065820823]
[0.03543699837030739, 1.4688361975260092e-7, 0.9645628547460712]
[0.030425371816163987, 1.2546809318472718e-7, 0.9695745027157405]
[0.026099132201150083, 1.0715608431717981e-7, 0.9739007606427643]
[0.02236969169455009, 9.149844876161108e-8, 0.9776302168069992]
[0.01915856331353317, 7.811096380138723e-8, 0.9808413585755008]
[0.01782789385075171, 7.258919982166322e-8, 0.9821720335600463]
If we benchmark this, we see a really fast solution with really low allocation counts:
BT.@btime sol = DE.solve(prob, DE.Rosenbrock23());
18.279 μs (151 allocations: 18.90 KiB)
This version is thus very amenable to multithreading and other forms of parallelism.
Example Accelerating Linear Algebra PDE Semi-Discretization
In this tutorial, we will optimize the right-hand side definition of a PDE semi-discretization.
We highly recommend looking at the Solving Large Stiff Equations tutorial for details on customizing DifferentialEquations.jl for more efficient large-scale stiff ODE solving. This section will only focus on the user-side code.
Let's optimize the solution of a Reaction-Diffusion PDE's discretization. In its discretized form, this is the ODE:
\[\begin{align} du &= D_1 (A_y u + u A_x) + \frac{au^2}{v} + \bar{u} - \alpha u\\ dv &= D_2 (A_y v + v A_x) + a u^2 + \beta v \end{align}\]
where $u$, $v$, and $A$ are matrices. Here, we will use the simplified version where $A$ is the tridiagonal stencil $[1,-2,1]$, i.e. it's the 2D discretization of the Laplacian. The native code would be something along the lines of:
import DifferentialEquations as DE, LinearAlgebra as LA, BenchmarkTools as BT
# Generate the constants
p = (1.0, 1.0, 1.0, 10.0, 0.001, 100.0) # a,α,ubar,β,D1,D2
N = 100
Ax = Array(LA.Tridiagonal([1.0 for i in 1:(N - 1)], [-2.0 for i in 1:N],
[1.0 for i in 1:(N - 1)]))
Ay = copy(Ax)
Ax[2, 1] = 2.0
Ax[end - 1, end] = 2.0
Ay[1, 2] = 2.0
Ay[end, end - 1] = 2.0
function basic_version!(dr, r, p, t)
a, α, ubar, β, D1, D2 = p
u = r[:, :, 1]
v = r[:, :, 2]
Du = D1 * (Ay * u + u * Ax)
Dv = D2 * (Ay * v + v * Ax)
dr[:, :, 1] = Du .+ a .* u .* u ./ v .+ ubar .- α * u
dr[:, :, 2] = Dv .+ a .* u .* u .- β * v
end
a, α, ubar, β, D1, D2 = p
uss = (ubar + β) / α
vss = (a / β) * uss^2
r0 = zeros(100, 100, 2)
r0[:, :, 1] .= uss .+ 0.1 .* rand.()
r0[:, :, 2] .= vss
prob = DE.ODEProblem(basic_version!, r0, (0.0, 0.1), p)
ODEProblem with uType Array{Float64, 3} and tType Float64. In-place: true
Non-trivial mass matrix: false
timespan: (0.0, 0.1)
u0: 100×100×2 Array{Float64, 3}:
[:, :, 1] =
11.0886 11.0786 11.0876 11.0217 … 11.0523 11.0373 11.0243 11.0999
11.0746 11.0673 11.0905 11.0824 11.0455 11.0571 11.0862 11.0484
11.0923 11.045 11.0701 11.0496 11.0909 11.0165 11.0746 11.075
11.0155 11.0871 11.0278 11.0711 11.0109 11.0387 11.0671 11.0264
11.0923 11.0996 11.0562 11.0558 11.0856 11.0343 11.0768 11.0819
11.0865 11.0403 11.0934 11.0425 … 11.0298 11.0932 11.0801 11.0745
11.0552 11.0952 11.0063 11.0121 11.0107 11.0978 11.0955 11.0877
11.0946 11.0648 11.0794 11.0866 11.0947 11.0357 11.057 11.0341
11.0161 11.0767 11.0142 11.0633 11.0305 11.0452 11.0171 11.0426
11.0474 11.0006 11.0878 11.0218 11.0388 11.0377 11.0815 11.0919
⋮ ⋱
11.0828 11.0039 11.0124 11.0457 11.011 11.0874 11.0819 11.0694
11.0949 11.0947 11.0563 11.0404 11.0112 11.0149 11.076 11.036
11.0984 11.092 11.0281 11.0916 11.0121 11.0652 11.015 11.0808
11.0343 11.0863 11.0754 11.0081 11.0171 11.0664 11.0381 11.0615
11.0185 11.0344 11.0767 11.0488 … 11.0808 11.0607 11.0933 11.0326
11.0801 11.0879 11.0086 11.071 11.0358 11.0452 11.0339 11.0946
11.0634 11.0753 11.0467 11.036 11.0359 11.0823 11.0124 11.0952
11.0509 11.0376 11.0957 11.0209 11.0955 11.0669 11.0132 11.0445
11.0442 11.0738 11.0814 11.0758 11.0465 11.0457 11.0883 11.0938
[:, :, 2] =
12.1 12.1 12.1 12.1 12.1 12.1 … 12.1 12.1 12.1 12.1 12.1 12.1
12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1
12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1
12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1
12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1
12.1 12.1 12.1 12.1 12.1 12.1 … 12.1 12.1 12.1 12.1 12.1 12.1
12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1
12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1
12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1
12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1
⋮ ⋮ ⋱ ⋮
12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1
12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1
12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1
12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1
12.1 12.1 12.1 12.1 12.1 12.1 … 12.1 12.1 12.1 12.1 12.1 12.1
12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1
12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1
12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1
12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1
In this version, we have encoded our initial condition to be a 3-dimensional array, with u[:,:,1]
being the A
part and u[:,:,2]
being the B
part.
BT.@btime DE.solve(prob, DE.Tsit5());
53.268 ms (8903 allocations: 186.88 MiB)
While this version isn't very efficient,
We recommend writing the “high-level” code first, and iteratively optimizing it!
The first thing that we can do is get rid of the slicing allocations. The operation r[:,:,1]
creates a temporary array instead of a “view”, i.e. a pointer to the already existing memory. To make it a view, add @view
. Note that we have to be careful with views because they point to the same memory, and thus changing a view changes the original values:
A = rand(4)
@show A
B = @view A[1:3]
B[2] = 2
@show A
4-element Vector{Float64}:
0.1670872839659684
2.0
0.5386024761612592
0.8129095006896223
Notice that changing B
changed A
. This is something to be careful of, but at the same time we want to use this since we want to modify the output dr
. Additionally, the last statement is a purely element-wise operation, and thus we can make use of broadcast fusion there. Let's rewrite basic_version!
to ***avoid slicing allocations*** and to ***use broadcast fusion***:
function gm2!(dr, r, p, t)
a, α, ubar, β, D1, D2 = p
u = @view r[:, :, 1]
v = @view r[:, :, 2]
du = @view dr[:, :, 1]
dv = @view dr[:, :, 2]
Du = D1 * (Ay * u + u * Ax)
Dv = D2 * (Ay * v + v * Ax)
@. du = Du + a .* u .* u ./ v + ubar - α * u
@. dv = Dv + a .* u .* u - β * v
end
prob = DE.ODEProblem(gm2!, r0, (0.0, 0.1), p)
BT.@btime DE.solve(prob, DE.Tsit5());
46.830 ms (6698 allocations: 119.66 MiB)
Now, most of the allocations are taking place in Du = D1*(Ay*u + u*Ax)
since those operations are vectorized and not mutating. We should instead replace the matrix multiplications with LA.mul!
. When doing so, we will need to have cache variables to write into. This looks like:
Ayu = zeros(N, N)
uAx = zeros(N, N)
Du = zeros(N, N)
Ayv = zeros(N, N)
vAx = zeros(N, N)
Dv = zeros(N, N)
function gm3!(dr, r, p, t)
a, α, ubar, β, D1, D2 = p
u = @view r[:, :, 1]
v = @view r[:, :, 2]
du = @view dr[:, :, 1]
dv = @view dr[:, :, 2]
LA.mul!(Ayu, Ay, u)
LA.mul!(uAx, u, Ax)
LA.mul!(Ayv, Ay, v)
LA.mul!(vAx, v, Ax)
@. Du = D1 * (Ayu + uAx)
@. Dv = D2 * (Ayv + vAx)
@. du = Du + a * u * u ./ v + ubar - α * u
@. dv = Dv + a * u * u - β * v
end
prob = DE.ODEProblem(gm3!, r0, (0.0, 0.1), p)
BT.@btime DE.solve(prob, DE.Tsit5());
42.356 ms (3758 allocations: 29.86 MiB)
But our temporary variables are global variables. We need to either declare the caches as const
or localize them. We can localize them by adding them to the parameters, p
. It's easier for the compiler to reason about local variables than global variables. ***Localizing variables helps to ensure type stability***.
p = (1.0, 1.0, 1.0, 10.0, 0.001, 100.0, Ayu, uAx, Du, Ayv, vAx, Dv) # a,α,ubar,β,D1,D2
function gm4!(dr, r, p, t)
a, α, ubar, β, D1, D2, Ayu, uAx, Du, Ayv, vAx, Dv = p
u = @view r[:, :, 1]
v = @view r[:, :, 2]
du = @view dr[:, :, 1]
dv = @view dr[:, :, 2]
LA.mul!(Ayu, Ay, u)
LA.mul!(uAx, u, Ax)
LA.mul!(Ayv, Ay, v)
LA.mul!(vAx, v, Ax)
@. Du = D1 * (Ayu + uAx)
@. Dv = D2 * (Ayv + vAx)
@. du = Du + a * u * u ./ v + ubar - α * u
@. dv = Dv + a * u * u - β * v
end
prob = DE.ODEProblem(gm4!, r0, (0.0, 0.1), p)
BT.@btime DE.solve(prob, DE.Tsit5());
41.603 ms (1247 allocations: 29.66 MiB)
We could then use the BLAS gemmv
to optimize the matrix multiplications some more, but instead let's devectorize the stencil.
p = (1.0, 1.0, 1.0, 10.0, 0.001, 100.0, N)
function fast_gm!(du, u, p, t)
a, α, ubar, β, D1, D2, N = p
@inbounds for j in 2:(N - 1), i in 2:(N - 1)
du[i, j, 1] = D1 *
(u[i - 1, j, 1] + u[i + 1, j, 1] + u[i, j + 1, 1] + u[i, j - 1, 1] -
4u[i, j, 1]) +
a * u[i, j, 1]^2 / u[i, j, 2] + ubar - α * u[i, j, 1]
end
@inbounds for j in 2:(N - 1), i in 2:(N - 1)
du[i, j, 2] = D2 *
(u[i - 1, j, 2] + u[i + 1, j, 2] + u[i, j + 1, 2] + u[i, j - 1, 2] -
4u[i, j, 2]) +
a * u[i, j, 1]^2 - β * u[i, j, 2]
end
@inbounds for j in 2:(N - 1)
i = 1
du[1, j, 1] = D1 *
(2u[i + 1, j, 1] + u[i, j + 1, 1] + u[i, j - 1, 1] - 4u[i, j, 1]) +
a * u[i, j, 1]^2 / u[i, j, 2] + ubar - α * u[i, j, 1]
end
@inbounds for j in 2:(N - 1)
i = 1
du[1, j, 2] = D2 *
(2u[i + 1, j, 2] + u[i, j + 1, 2] + u[i, j - 1, 2] - 4u[i, j, 2]) +
a * u[i, j, 1]^2 - β * u[i, j, 2]
end
@inbounds for j in 2:(N - 1)
i = N
du[end, j, 1] = D1 *
(2u[i - 1, j, 1] + u[i, j + 1, 1] + u[i, j - 1, 1] - 4u[i, j, 1]) +
a * u[i, j, 1]^2 / u[i, j, 2] + ubar - α * u[i, j, 1]
end
@inbounds for j in 2:(N - 1)
i = N
du[end, j, 2] = D2 *
(2u[i - 1, j, 2] + u[i, j + 1, 2] + u[i, j - 1, 2] - 4u[i, j, 2]) +
a * u[i, j, 1]^2 - β * u[i, j, 2]
end
@inbounds for i in 2:(N - 1)
j = 1
du[i, 1, 1] = D1 *
(u[i - 1, j, 1] + u[i + 1, j, 1] + 2u[i, j + 1, 1] - 4u[i, j, 1]) +
a * u[i, j, 1]^2 / u[i, j, 2] + ubar - α * u[i, j, 1]
end
@inbounds for i in 2:(N - 1)
j = 1
du[i, 1, 2] = D2 *
(u[i - 1, j, 2] + u[i + 1, j, 2] + 2u[i, j + 1, 2] - 4u[i, j, 2]) +
a * u[i, j, 1]^2 - β * u[i, j, 2]
end
@inbounds for i in 2:(N - 1)
j = N
du[i, end, 1] = D1 *
(u[i - 1, j, 1] + u[i + 1, j, 1] + 2u[i, j - 1, 1] - 4u[i, j, 1]) +
a * u[i, j, 1]^2 / u[i, j, 2] + ubar - α * u[i, j, 1]
end
@inbounds for i in 2:(N - 1)
j = N
du[i, end, 2] = D2 *
(u[i - 1, j, 2] + u[i + 1, j, 2] + 2u[i, j - 1, 2] - 4u[i, j, 2]) +
a * u[i, j, 1]^2 - β * u[i, j, 2]
end
@inbounds begin
i = 1
j = 1
du[1, 1, 1] = D1 * (2u[i + 1, j, 1] + 2u[i, j + 1, 1] - 4u[i, j, 1]) +
a * u[i, j, 1]^2 / u[i, j, 2] + ubar - α * u[i, j, 1]
du[1, 1, 2] = D2 * (2u[i + 1, j, 2] + 2u[i, j + 1, 2] - 4u[i, j, 2]) +
a * u[i, j, 1]^2 - β * u[i, j, 2]
i = 1
j = N
du[1, N, 1] = D1 * (2u[i + 1, j, 1] + 2u[i, j - 1, 1] - 4u[i, j, 1]) +
a * u[i, j, 1]^2 / u[i, j, 2] + ubar - α * u[i, j, 1]
du[1, N, 2] = D2 * (2u[i + 1, j, 2] + 2u[i, j - 1, 2] - 4u[i, j, 2]) +
a * u[i, j, 1]^2 - β * u[i, j, 2]
i = N
j = 1
du[N, 1, 1] = D1 * (2u[i - 1, j, 1] + 2u[i, j + 1, 1] - 4u[i, j, 1]) +
a * u[i, j, 1]^2 / u[i, j, 2] + ubar - α * u[i, j, 1]
du[N, 1, 2] = D2 * (2u[i - 1, j, 2] + 2u[i, j + 1, 2] - 4u[i, j, 2]) +
a * u[i, j, 1]^2 - β * u[i, j, 2]
i = N
j = N
du[end, end, 1] = D1 * (2u[i - 1, j, 1] + 2u[i, j - 1, 1] - 4u[i, j, 1]) +
a * u[i, j, 1]^2 / u[i, j, 2] + ubar - α * u[i, j, 1]
du[end, end, 2] = D2 * (2u[i - 1, j, 2] + 2u[i, j - 1, 2] - 4u[i, j, 2]) +
a * u[i, j, 1]^2 - β * u[i, j, 2]
end
end
prob = DE.ODEProblem(fast_gm!, r0, (0.0, 0.1), p)
BT.@btime DE.solve(prob, DE.Tsit5());
6.620 ms (659 allocations: 29.62 MiB)
Notice that in this case fusing the loops and avoiding the linear operators is a major improvement of about 10x! That's an order of magnitude faster than our original MATLAB/SciPy/R vectorized style code!
Since this is tedious to do by hand, we note that ModelingToolkit.jl's symbolic code generation can do this automatically from the basic version:
import ModelingToolkit as MTK
function basic_version!(dr, r, p, t)
a, α, ubar, β, D1, D2 = p
u = r[:, :, 1]
v = r[:, :, 2]
Du = D1 * (Ay * u + u * Ax)
Dv = D2 * (Ay * v + v * Ax)
dr[:, :, 1] = Du .+ a .* u .* u ./ v .+ ubar .- α * u
dr[:, :, 2] = Dv .+ a .* u .* u .- β * v
end
a, α, ubar, β, D1, D2 = p
uss = (ubar + β) / α
vss = (a / β) * uss^2
r0 = zeros(100, 100, 2)
r0[:, :, 1] .= uss .+ 0.1 .* rand.()
r0[:, :, 2] .= vss
prob = DE.ODEProblem(basic_version!, r0, (0.0, 0.1), p)
de = MTK.complete(MTK.modelingtoolkitize(prob))
# Note jac=true,sparse=true makes it automatically build sparse Jacobian code
# as well!
fastprob = DE.ODEProblem(de, [], (0.0, 0.1); jac = true, sparse = true)
ODEProblem with uType Vector{Float64} and tType Float64. In-place: true
Initialization status: FULLY_DETERMINED
Non-trivial mass matrix: false
timespan: (0.0, 0.1)
u0: 20000-element Vector{Float64}:
11.072743449748454
11.04257855137012
11.096653907931728
11.073235079302975
11.047123031742554
11.015740617568705
11.041975897417185
11.009592847121269
11.088245855435948
11.027388828293535
⋮
12.100000000000001
12.100000000000001
12.100000000000001
12.100000000000001
12.100000000000001
12.100000000000001
12.100000000000001
12.100000000000001
12.100000000000001
Lastly, we can do other things like multithread the main loops. LoopVectorization.jl provides the @turbo
macro for doing a lot of SIMD enhancements, and @tturbo
is the multithreaded version.
Optimizing Algorithm Choices
The last thing to do is then ***optimize our algorithm choice***. We have been using DE.Tsit5()
as our test algorithm, but in reality this problem is a stiff PDE discretization and thus one recommendation is to use Sundials.CVODE_BDF()
. However, instead of using the default dense Jacobian, we should make use of the sparse Jacobian afforded by the problem. The Jacobian is the matrix $\frac{df_i}{dr_j}$, where $r$ is read by the linear index (i.e. down columns). But since the $u$ variables depend on the $v$, the band size here is large, and thus this will not do well with a Banded Jacobian solver. Instead, we utilize sparse Jacobian algorithms. Sundials.CVODE_BDF
allows us to use a sparse Newton-Krylov solver by setting linear_solver = :GMRES
.
The Solving Large Stiff Equations tutorial goes through these details. This is simply to give a taste of how much optimization opportunity is left on the table!
Let's see how our fast right-hand side scales as we increase the integration time.
prob = DE.ODEProblem(fast_gm!, r0, (0.0, 10.0), p)
BT.@btime DE.solve(prob, DE.Tsit5());
718.500 ms (60116 allocations: 2.76 GiB)
import Sundials
BT.@btime DE.solve(prob, Sundials.CVODE_BDF(; linear_solver = :GMRES));
264.165 ms (7181 allocations: 51.98 MiB)
prob = DE.ODEProblem(fast_gm!, r0, (0.0, 100.0), p)
# Will go out of memory if we don't turn off `save_everystep`!
BT.@btime DE.solve(prob, DE.Tsit5(); save_everystep = false);
3.999 s (90 allocations: 2.90 MiB)
BT.@btime DE.solve(prob, Sundials.CVODE_BDF(; linear_solver = :GMRES); save_everystep = false);
1.731 s (39961 allocations: 2.34 MiB)
prob = DE.ODEProblem(fast_gm!, r0, (0.0, 500.0), p)
BT.@btime DE.solve(prob, Sundials.CVODE_BDF(; linear_solver = :GMRES); save_everystep = false);
2.339 s (53665 allocations: 2.83 MiB)
Notice that we've eliminated almost all allocations, allowing the code to grow without hitting garbage collection and slowing down.
Why is Sundials.CVODE_BDF
doing well? What's happening is that, because the problem is stiff, the number of steps required by the explicit Runge-Kutta method grows rapidly, whereas Sundials.CVODE_BDF
is taking large steps. Additionally, the GMRES
linear solver form is quite an efficient way to solve the implicit system in this case. This is problem-dependent, and in many cases using a Krylov method effectively requires a preconditioner, so you need to play around with testing other algorithms and linear solvers to find out what works best with your problem.
Now continue to the Solving Large Stiff Equations tutorial for more details on optimizing the algorithm choice for such codes.