Code Optimization for Differential Equations

Note

See this FAQ for information on common pitfalls and how to improve performance.

Code Optimization in Julia

Before starting this tutorial, we recommend the reader to check out one of the many tutorials for optimization Julia code. The following is an incomplete list:

User-side optimizations are important because, for sufficiently difficult problems, most time will be spent inside your f function, the function you are trying to solve. “Efficient” integrators are those that reduce the required number of f calls to hit the error tolerance. The main ideas for optimizing your DiffEq code, or any Julia function, are the following:

  • Make it non-allocating
  • Use StaticArrays for small arrays
  • Use broadcast fusion
  • Make it type-stable
  • Reduce redundant calculations
  • Make use of BLAS calls
  • Optimize algorithm choice

We'll discuss these strategies in the context of differential equations. Let's start with small systems.

Example Accelerating a Non-Stiff Equation: The Lorenz Equation

Let's take the classic Lorenz system. Let's start by naively writing the system in its out-of-place form:

function lorenz(u, p, t)
    dx = 10.0 * (u[2] - u[1])
    dy = u[1] * (28.0 - u[3]) - u[2]
    dz = u[1] * u[2] - (8 / 3) * u[3]
    [dx, dy, dz]
end
lorenz (generic function with 1 method)

Here, lorenz returns an object, [dx,dy,dz], which is created within the body of lorenz.

This is a common code pattern from high-level languages like MATLAB, SciPy, or R's deSolve. However, the issue with this form is that it allocates a vector, [dx,dy,dz], at each step. Let's benchmark the solution process with this choice of function:

using DifferentialEquations, BenchmarkTools
u0 = [1.0; 0.0; 0.0]
tspan = (0.0, 100.0)
prob = ODEProblem(lorenz, u0, tspan)
@btime solve(prob, Tsit5());
  3.856 ms (101102 allocations: 7.82 MiB)

The BenchmarkTools.jl package's @benchmark runs the code multiple times to get an accurate measurement. The minimum time is the time it takes when your OS and other background processes aren't getting in the way. Notice that in this case it takes about 5ms to solve and allocates around 11.11 MiB. However, if we were to use this inside of a real user code, we'd see a lot of time spent doing garbage collection (GC) to clean up all the arrays we made. Even if we turn off saving, we have these allocations.

@btime solve(prob, Tsit5(), save_everystep = false);
  3.402 ms (89529 allocations: 6.83 MiB)

The problem, of course, is that arrays are created every time our derivative function is called. This function is called multiple times per step and is thus the main source of memory usage. To fix this, we can use the in-place form to ***make our code non-allocating***:

function lorenz!(du, u, p, t)
    du[1] = 10.0 * (u[2] - u[1])
    du[2] = u[1] * (28.0 - u[3]) - u[2]
    du[3] = u[1] * u[2] - (8 / 3) * u[3]
    nothing
end
lorenz! (generic function with 1 method)

Here, instead of creating an array each time, we utilized the cache array du. When the in-place form is used, DifferentialEquations.jl takes a different internal route that minimizes the internal allocations as well.

Note

Notice that nothing is returned. When in in-place form, the ODE solver ignores the return. Instead, make sure that the original du array is mutated instead of constructing a new array

When we benchmark this function, we will see quite a difference.

u0 = [1.0; 0.0; 0.0]
tspan = (0.0, 100.0)
prob = ODEProblem(lorenz!, u0, tspan)
@btime solve(prob, Tsit5());
  789.794 μs (11416 allocations: 996.23 KiB)
@btime solve(prob, Tsit5(), save_everystep = false);
  359.108 μs (50 allocations: 3.91 KiB)

There is a 16x time difference just from that change! Notice there are still some allocations and this is due to the construction of the integration cache. But this doesn't scale with the problem size:

tspan = (0.0, 500.0) # 5x longer than before
prob = ODEProblem(lorenz!, u0, tspan)
@btime solve(prob, Tsit5(), save_everystep = false);
  1.856 ms (50 allocations: 3.91 KiB)

Since that's all setup allocations, the user-side optimization is complete.

Further Optimizations of Small Non-Stiff ODEs with StaticArrays

Allocations are only expensive if they are “heap allocations”. For a more in-depth definition of heap allocations, there are many sources online. But a good working definition is that heap allocations are variable-sized slabs of memory which have to be pointed to, and this pointer indirection costs time. Additionally, the heap has to be managed, and the garbage controllers has to actively keep track of what's on the heap.

However, there's an alternative to heap allocations, known as stack allocations. The stack is statically-sized (known at compile time) and thus its accesses are quick. Additionally, the exact block of memory is known in advance by the compiler, and thus re-using the memory is cheap. This means that allocating on the stack has essentially no cost!

Arrays have to be heap allocated because their size (and thus the amount of memory they take up) is determined at runtime. But there are structures in Julia which are stack-allocated. structs for example are stack-allocated “value-type”s. Tuples are a stack-allocated collection. The most useful data structure for DiffEq though is the StaticArray from the package StaticArrays.jl. These arrays have their length determined at compile-time. They are created using macros attached to normal array expressions, for example:

using StaticArrays
A = SA[2.0, 3.0, 5.0]
typeof(A) # SVector{3, Float64} (alias for SArray{Tuple{3}, Float64, 1, 3})
SVector{3, Float64} (alias for StaticArraysCore.SArray{Tuple{3}, Float64, 1, 3})

Notice that the 3 after SVector gives the size of the SVector. It cannot be changed. Additionally, SVectors are immutable, so we have to create a new SVector to change values. But remember, we don't have to worry about allocations because this data structure is stack-allocated. SArrays have numerous extra optimizations as well: they have fast matrix multiplication, fast QR factorizations, etc. which directly make use of the information about the size of the array. Thus, when possible, they should be used.

Unfortunately, static arrays can only be used for sufficiently small arrays. After a certain size, they are forced to heap allocate after some instructions and their compile time balloons. Thus, static arrays shouldn't be used if your system has more than ~20 variables. Additionally, only the native Julia algorithms can fully utilize static arrays.

Let's ***optimize lorenz using static arrays***. Note that in this case, we want to use the out-of-place allocating form, but this time we want to output a static array:

function lorenz_static(u, p, t)
    dx = 10.0 * (u[2] - u[1])
    dy = u[1] * (28.0 - u[3]) - u[2]
    dz = u[1] * u[2] - (8 / 3) * u[3]
    SA[dx, dy, dz]
end
lorenz_static (generic function with 1 method)

To make the solver internally use static arrays, we simply give it a static array as the initial condition:

u0 = SA[1.0, 0.0, 0.0]
tspan = (0.0, 100.0)
prob = ODEProblem(lorenz_static, u0, tspan)
@btime solve(prob, Tsit5());
  314.898 μs (1293 allocations: 387.30 KiB)
@btime solve(prob, Tsit5(), save_everystep = false);
  189.509 μs (22 allocations: 2.16 KiB)

And that's pretty much all there is to it. With static arrays, you don't have to worry about allocating, so use operations like * and don't worry about fusing operations (discussed in the next section). Do “the vectorized code” of R/MATLAB/Python and your code in this case will be fast, or directly use the numbers/values.

Example Accelerating a Stiff Equation: the Robertson Equation

For these next examples, let's solve the Robertson equations (also known as ROBER):

\[\begin{aligned} \frac{dy_1}{dt} &= -0.04y₁ + 10^4 y_2 y_3 \\ \frac{dy_2}{dt} &= 0.04 y_1 - 10^4 y_2 y_3 - 3*10^7 y_{2}^2 \\ \frac{dy_3}{dt} &= 3*10^7 y_{2}^2 \\ \end{aligned}\]

Given that these equations are stiff, non-stiff ODE solvers like Tsit5 or Vern9 will fail to solve these equations. The automatic algorithm will detect this and automatically switch to something more robust to handle these issues. For example:

using DifferentialEquations
using Plots
function rober!(du, u, p, t)
    y₁, y₂, y₃ = u
    k₁, k₂, k₃ = p
    du[1] = -k₁ * y₁ + k₃ * y₂ * y₃
    du[2] = k₁ * y₁ - k₂ * y₂^2 - k₃ * y₂ * y₃
    du[3] = k₂ * y₂^2
    nothing
end
prob = ODEProblem(rober!, [1.0, 0.0, 0.0], (0.0, 1e5), [0.04, 3e7, 1e4])
sol = solve(prob)
plot(sol, tspan = (1e-2, 1e5), xscale = :log10)
Example block output
using BenchmarkTools
@btime solve(prob);
  102.500 μs (675 allocations: 58.72 KiB)

Choosing a Good Solver

Choosing a good solver is required for getting top-notch speed. General recommendations can be found on the solver page (for example, the ODE Solver Recommendations). The current recommendations can be simplified to a Rosenbrock method (Rosenbrock23 or Rodas5) for smaller (<50 ODEs) problems, ESDIRK methods for slightly larger (TRBDF2 or KenCarp4 for <2000 ODEs), and QNDF for even larger problems. lsoda from LSODA.jl is sometimes worth a try for the medium-sized category.

More details on the solver to choose can be found by benchmarking. See the SciMLBenchmarks to compare many solvers on many problems.

From this, we try the recommendation of Rosenbrock23() for stiff ODEs at default tolerances:

@btime solve(prob, Rosenbrock23());
  83.260 μs (501 allocations: 40.67 KiB)

Declaring Jacobian Functions

In order to reduce the Jacobian construction cost, one can describe a Jacobian function by using the jac argument for the ODEFunction. First we have to derive the Jacobian $\frac{df_i}{du_j}$ which is J[i,j]. From this, we get:

function rober_jac!(J, u, p, t)
    y₁, y₂, y₃ = u
    k₁, k₂, k₃ = p
    J[1, 1] = k₁ * -1
    J[2, 1] = k₁
    J[3, 1] = 0
    J[1, 2] = y₃ * k₃
    J[2, 2] = y₂ * k₂ * -2 + y₃ * k₃ * -1
    J[3, 2] = y₂ * 2 * k₂
    J[1, 3] = k₃ * y₂
    J[2, 3] = k₃ * y₂ * -1
    J[3, 3] = 0
    nothing
end
f! = ODEFunction(rober!, jac = rober_jac!)
prob_jac = ODEProblem(f!, [1.0, 0.0, 0.0], (0.0, 1e5), (0.04, 3e7, 1e4))
ODEProblem with uType Vector{Float64} and tType Float64. In-place: true
timespan: (0.0, 100000.0)
u0: 3-element Vector{Float64}:
 1.0
 0.0
 0.0
@btime solve(prob_jac, Rosenbrock23());
  71.059 μs (421 allocations: 34.55 KiB)

Automatic Derivation of Jacobian Functions

But that was hard! If you want to take the symbolic Jacobian of numerical code, we can make use of ModelingToolkit.jl to symbolic-ify the numerical code and do the symbolic calculation and return the Julia code for this.

using ModelingToolkit
de = modelingtoolkitize(prob)

\[ \begin{align} \frac{\mathrm{d} x_1\left( t \right)}{\mathrm{d}t} =& - x_1\left( t \right) \alpha_1 + x_2\left( t \right) x_3\left( t \right) \alpha_3 \\ \frac{\mathrm{d} x_2\left( t \right)}{\mathrm{d}t} =& x_1\left( t \right) \alpha_1 - \left( x_2\left( t \right) \right)^{2} \alpha_2 - x_2\left( t \right) x_3\left( t \right) \alpha_3 \\ \frac{\mathrm{d} x_3\left( t \right)}{\mathrm{d}t} =& \left( x_2\left( t \right) \right)^{2} \alpha_2 \end{align} \]

We can tell it to compute the Jacobian if we want to see the code:

ModelingToolkit.generate_jacobian(de)[2] # Second is in-place
:(function (ˍ₋out, ˍ₋arg1, ˍ₋arg2, t)
      #= /root/.cache/julia-buildkite-plugin/depots/0185fce3-4489-413a-a934-123dd653ef61/packages/SymbolicUtils/ssQsQ/src/code.jl:373 =#
      #= /root/.cache/julia-buildkite-plugin/depots/0185fce3-4489-413a-a934-123dd653ef61/packages/SymbolicUtils/ssQsQ/src/code.jl:374 =#
      #= /root/.cache/julia-buildkite-plugin/depots/0185fce3-4489-413a-a934-123dd653ef61/packages/SymbolicUtils/ssQsQ/src/code.jl:375 =#
      begin
          begin
              begin
                  #= /root/.cache/julia-buildkite-plugin/depots/0185fce3-4489-413a-a934-123dd653ef61/packages/Symbolics/lUFzg/src/build_function.jl:537 =#
                  #= /root/.cache/julia-buildkite-plugin/depots/0185fce3-4489-413a-a934-123dd653ef61/packages/SymbolicUtils/ssQsQ/src/code.jl:422 =# @inbounds begin
                          #= /root/.cache/julia-buildkite-plugin/depots/0185fce3-4489-413a-a934-123dd653ef61/packages/SymbolicUtils/ssQsQ/src/code.jl:418 =#
                          ˍ₋out[1] = (*)(-1, ˍ₋arg2[1])
                          ˍ₋out[2] = ˍ₋arg2[1]
                          ˍ₋out[3] = 0
                          ˍ₋out[4] = (*)(ˍ₋arg1[3], ˍ₋arg2[3])
                          ˍ₋out[5] = (+)((*)((*)(-2, ˍ₋arg1[2]), ˍ₋arg2[2]), (*)((*)(-1, ˍ₋arg1[3]), ˍ₋arg2[3]))
                          ˍ₋out[6] = (*)((*)(2, ˍ₋arg1[2]), ˍ₋arg2[2])
                          ˍ₋out[7] = (*)(ˍ₋arg1[2], ˍ₋arg2[3])
                          ˍ₋out[8] = (*)((*)(-1, ˍ₋arg1[2]), ˍ₋arg2[3])
                          ˍ₋out[9] = 0
                          #= /root/.cache/julia-buildkite-plugin/depots/0185fce3-4489-413a-a934-123dd653ef61/packages/SymbolicUtils/ssQsQ/src/code.jl:420 =#
                          nothing
                      end
              end
          end
      end
  end)

Now let's use that to give the analytical solution Jacobian:

prob_jac2 = ODEProblem(de, [], (0.0, 1e5), jac = true)
ODEProblem with uType Vector{Float64} and tType Float64. In-place: true
timespan: (0.0, 100000.0)
u0: 3-element Vector{Float64}:
 1.0
 0.0
 0.0
@btime solve(prob_jac2);
  89.759 μs (604 allocations: 55.39 KiB)

See the ModelingToolkit.jl documentation for more details.

Accelerating Small ODE Solves with Static Arrays

If the ODE is sufficiently small (<20 ODEs or so), using StaticArrays.jl for the state variables can greatly enhance the performance. This is done by making u0 a StaticArray and writing an out-of-place non-mutating dispatch for static arrays, for the ROBER problem, this looks like:

using StaticArrays
function rober_static(u, p, t)
    y₁, y₂, y₃ = u
    k₁, k₂, k₃ = p
    du1 = -k₁ * y₁ + k₃ * y₂ * y₃
    du2 = k₁ * y₁ - k₂ * y₂^2 - k₃ * y₂ * y₃
    du3 = k₂ * y₂^2
    SA[du1, du2, du3]
end
prob = ODEProblem(rober_static, SA[1.0, 0.0, 0.0], (0.0, 1e5), SA[0.04, 3e7, 1e4])
sol = solve(prob, Rosenbrock23())
retcode: Success
Interpolation: specialized 2nd order "free" stiffness-aware interpolation
t: 61-element Vector{Float64}:
      0.0
      3.196206628740808e-5
      0.00014400709336278452
      0.00025605212043816096
      0.00048593871402339607
      0.0007179482102678373
      0.0010819240251828343
      0.0014801655107859655
      0.0020679567717440095
      0.002843584518457066
      ⋮
  25371.93159838571
  30784.11718374498
  37217.42390396605
  44850.61094811346
  53893.688830057334
  64593.73530179436
  77241.71691097679
  92180.81843146283
 100000.0
u: 61-element Vector{StaticArraysCore.SVector{3, Float64}}:
 [1.0, 0.0, 0.0]
 [0.9999987215181657, 1.2780900152625978e-6, 3.9181897521319503e-10]
 [0.9999942397329006, 5.7185104612947566e-6, 4.175663804739006e-8]
 [0.9999897579688383, 9.992106612572491e-6, 2.49924549040571e-7]
 [0.9999805626683271, 1.7833623941038088e-5, 1.6037077316934769e-6]
 [0.9999712826607852, 2.403488562731424e-5, 4.682453587410618e-6]
 [0.9999567250114038, 3.0390689334989113e-5, 1.2884299261094982e-5]
 [0.9999407986095145, 3.388427339038224e-5, 2.531711709494679e-5]
 [0.9999172960310598, 3.583508669306405e-5, 4.686888224684217e-5]
 [0.9998862913763157, 3.6412401619257426e-5, 7.729622206475401e-5]
 ⋮
 [0.05563508171413299, 2.3546322394505473e-7, 0.944364682822643]
 [0.04792535215921006, 2.0121496539471113e-7, 0.9520744466258242]
 [0.04123342367542562, 1.7192789116847065e-7, 0.9587664043966825]
 [0.03543700020207697, 1.4688362762022167e-7, 0.9645628529142939]
 [0.03042537309965341, 1.2546809864160579e-7, 0.9695745014322468]
 [0.026099133126498936, 1.0715608821694989e-7, 0.9739007597174127]
 [0.022369692367946295, 9.149845157822577e-8, 0.977630216133602]
 [0.019158563494465552, 7.811096455346327e-8, 0.9808413583945704]
 [0.017827893845894678, 7.258919980139008e-8, 0.982172033564906]

If we benchmark this, we see a really fast solution with really low allocation counts:

@btime sol = solve(prob, Rosenbrock23());
  89.780 μs (807 allocations: 46.48 KiB)

This version is thus very amenable to multithreading and other forms of parallelism.

Example Accelerating Linear Algebra PDE Semi-Discretization

In this tutorial, we will optimize the right-hand side definition of a PDE semi-discretization.

Note

We highly recommend looking at the Solving Large Stiff Equations tutorial for details on customizing DifferentialEquations.jl for more efficient large-scale stiff ODE solving. This section will only focus on the user-side code.

Let's optimize the solution of a Reaction-Diffusion PDE's discretization. In its discretized form, this is the ODE:

\[\begin{align} du &= D_1 (A_y u + u A_x) + \frac{au^2}{v} + \bar{u} - \alpha u\\ dv &= D_2 (A_y v + v A_x) + a u^2 + \beta v \end{align}\]

where $u$, $v$, and $A$ are matrices. Here, we will use the simplified version where $A$ is the tridiagonal stencil $[1,-2,1]$, i.e. it's the 2D discretization of the Laplacian. The native code would be something along the lines of:

using DifferentialEquations, LinearAlgebra, BenchmarkTools
# Generate the constants
p = (1.0, 1.0, 1.0, 10.0, 0.001, 100.0) # a,α,ubar,β,D1,D2
N = 100
Ax = Array(Tridiagonal([1.0 for i in 1:(N - 1)], [-2.0 for i in 1:N],
    [1.0 for i in 1:(N - 1)]))
Ay = copy(Ax)
Ax[2, 1] = 2.0
Ax[end - 1, end] = 2.0
Ay[1, 2] = 2.0
Ay[end, end - 1] = 2.0

function basic_version!(dr, r, p, t)
    a, α, ubar, β, D1, D2 = p
    u = r[:, :, 1]
    v = r[:, :, 2]
    Du = D1 * (Ay * u + u * Ax)
    Dv = D2 * (Ay * v + v * Ax)
    dr[:, :, 1] = Du .+ a .* u .* u ./ v .+ ubar .- α * u
    dr[:, :, 2] = Dv .+ a .* u .* u .- β * v
end

a, α, ubar, β, D1, D2 = p
uss = (ubar + β) / α
vss = (a / β) * uss^2
r0 = zeros(100, 100, 2)
r0[:, :, 1] .= uss .+ 0.1 .* rand.()
r0[:, :, 2] .= vss

prob = ODEProblem(basic_version!, r0, (0.0, 0.1), p)
ODEProblem with uType Array{Float64, 3} and tType Float64. In-place: true
timespan: (0.0, 0.1)
u0: 100×100×2 Array{Float64, 3}:
[:, :, 1] =
 11.0458  11.0879  11.056   11.0656  …  11.0427  11.0359  11.0205  11.0985
 11.0694  11.0374  11.056   11.073      11.009   11.0045  11.0924  11.029
 11.0543  11.0786  11.0096  11.0842     11.0493  11.0967  11.0459  11.0744
 11.0469  11.0114  11.0736  11.0517     11.0088  11.0599  11.0877  11.0226
 11.0699  11.0594  11.0646  11.0918     11.0718  11.0507  11.0533  11.0998
 11.0628  11.0882  11.0801  11.0371  …  11.0022  11.0884  11.0697  11.0355
 11.0611  11.0431  11.0906  11.004      11.0008  11.0431  11.0467  11.023
 11.0063  11.0143  11.0536  11.0992     11.0433  11.0175  11.0604  11.0562
 11.0195  11.081   11.0623  11.0343     11.0073  11.0489  11.0022  11.0991
 11.0924  11.06    11.0992  11.0868     11.0951  11.0806  11.0327  11.0102
  ⋮                                  ⋱                             
 11.0299  11.0807  11.0289  11.0684     11.0172  11.0657  11.0255  11.0154
 11.0831  11.0692  11.0651  11.0602     11.0119  11.0825  11.0998  11.0335
 11.0717  11.0455  11.0262  11.0146     11.0059  11.0948  11.0528  11.0499
 11.0947  11.0683  11.0707  11.0217     11.0122  11.0475  11.0404  11.0612
 11.0532  11.0052  11.0651  11.0552  …  11.0362  11.0523  11.0494  11.0699
 11.0379  11.0348  11.0066  11.0576     11.0355  11.0525  11.0444  11.0336
 11.0791  11.0743  11.0324  11.0607     11.0537  11.0284  11.0143  11.0766
 11.0547  11.0964  11.0665  11.0937     11.0914  11.0641  11.0016  11.024
 11.0317  11.0895  11.0297  11.0267     11.0455  11.0408  11.0271  11.02

[:, :, 2] =
 12.1  12.1  12.1  12.1  12.1  12.1  …  12.1  12.1  12.1  12.1  12.1  12.1
 12.1  12.1  12.1  12.1  12.1  12.1     12.1  12.1  12.1  12.1  12.1  12.1
 12.1  12.1  12.1  12.1  12.1  12.1     12.1  12.1  12.1  12.1  12.1  12.1
 12.1  12.1  12.1  12.1  12.1  12.1     12.1  12.1  12.1  12.1  12.1  12.1
 12.1  12.1  12.1  12.1  12.1  12.1     12.1  12.1  12.1  12.1  12.1  12.1
 12.1  12.1  12.1  12.1  12.1  12.1  …  12.1  12.1  12.1  12.1  12.1  12.1
 12.1  12.1  12.1  12.1  12.1  12.1     12.1  12.1  12.1  12.1  12.1  12.1
 12.1  12.1  12.1  12.1  12.1  12.1     12.1  12.1  12.1  12.1  12.1  12.1
 12.1  12.1  12.1  12.1  12.1  12.1     12.1  12.1  12.1  12.1  12.1  12.1
 12.1  12.1  12.1  12.1  12.1  12.1     12.1  12.1  12.1  12.1  12.1  12.1
  ⋮                             ⋮    ⋱         ⋮                      
 12.1  12.1  12.1  12.1  12.1  12.1     12.1  12.1  12.1  12.1  12.1  12.1
 12.1  12.1  12.1  12.1  12.1  12.1     12.1  12.1  12.1  12.1  12.1  12.1
 12.1  12.1  12.1  12.1  12.1  12.1     12.1  12.1  12.1  12.1  12.1  12.1
 12.1  12.1  12.1  12.1  12.1  12.1     12.1  12.1  12.1  12.1  12.1  12.1
 12.1  12.1  12.1  12.1  12.1  12.1  …  12.1  12.1  12.1  12.1  12.1  12.1
 12.1  12.1  12.1  12.1  12.1  12.1     12.1  12.1  12.1  12.1  12.1  12.1
 12.1  12.1  12.1  12.1  12.1  12.1     12.1  12.1  12.1  12.1  12.1  12.1
 12.1  12.1  12.1  12.1  12.1  12.1     12.1  12.1  12.1  12.1  12.1  12.1
 12.1  12.1  12.1  12.1  12.1  12.1     12.1  12.1  12.1  12.1  12.1  12.1

In this version, we have encoded our initial condition to be a 3-dimensional array, with u[:,:,1] being the A part and u[:,:,2] being the B part.

@btime solve(prob, Tsit5());
  62.252 ms (7350 allocations: 186.83 MiB)

While this version isn't very efficient,

We recommend writing the “high-level” code first, and iteratively optimizing it!

The first thing that we can do is get rid of the slicing allocations. The operation r[:,:,1] creates a temporary array instead of a “view”, i.e. a pointer to the already existing memory. To make it a view, add @view. Note that we have to be careful with views because they point to the same memory, and thus changing a view changes the original values:

A = rand(4)
@show A
B = @view A[1:3]
B[2] = 2
@show A
4-element Vector{Float64}:
 0.33606030873914083
 2.0
 0.9437808076999354
 0.5640256456362562

Notice that changing B changed A. This is something to be careful of, but at the same time we want to use this since we want to modify the output dr. Additionally, the last statement is a purely element-wise operation, and thus we can make use of broadcast fusion there. Let's rewrite basic_version! to ***avoid slicing allocations*** and to ***use broadcast fusion***:

function gm2!(dr, r, p, t)
    a, α, ubar, β, D1, D2 = p
    u = @view r[:, :, 1]
    v = @view r[:, :, 2]
    du = @view dr[:, :, 1]
    dv = @view dr[:, :, 2]
    Du = D1 * (Ay * u + u * Ax)
    Dv = D2 * (Ay * v + v * Ax)
    @. du = Du + a .* u .* u ./ v + ubar - α * u
    @. dv = Dv + a .* u .* u - β * v
end
prob = ODEProblem(gm2!, r0, (0.0, 0.1), p)
@btime solve(prob, Tsit5());
  48.398 ms (5880 allocations: 119.71 MiB)

Now, most of the allocations are taking place in Du = D1*(Ay*u + u*Ax) since those operations are vectorized and not mutating. We should instead replace the matrix multiplications with mul!. When doing so, we will need to have cache variables to write into. This looks like:

Ayu = zeros(N, N)
uAx = zeros(N, N)
Du = zeros(N, N)
Ayv = zeros(N, N)
vAx = zeros(N, N)
Dv = zeros(N, N)
function gm3!(dr, r, p, t)
    a, α, ubar, β, D1, D2 = p
    u = @view r[:, :, 1]
    v = @view r[:, :, 2]
    du = @view dr[:, :, 1]
    dv = @view dr[:, :, 2]
    mul!(Ayu, Ay, u)
    mul!(uAx, u, Ax)
    mul!(Ayv, Ay, v)
    mul!(vAx, v, Ax)
    @. Du = D1 * (Ayu + uAx)
    @. Dv = D2 * (Ayv + vAx)
    @. du = Du + a * u * u ./ v + ubar - α * u
    @. dv = Dv + a * u * u - β * v
end
prob = ODEProblem(gm3!, r0, (0.0, 0.1), p)
@btime solve(prob, Tsit5());
  44.767 ms (4704 allocations: 29.97 MiB)

But our temporary variables are global variables. We need to either declare the caches as const or localize them. We can localize them by adding them to the parameters, p. It's easier for the compiler to reason about local variables than global variables. ***Localizing variables helps to ensure type stability***.

p = (1.0, 1.0, 1.0, 10.0, 0.001, 100.0, Ayu, uAx, Du, Ayv, vAx, Dv) # a,α,ubar,β,D1,D2
function gm4!(dr, r, p, t)
    a, α, ubar, β, D1, D2, Ayu, uAx, Du, Ayv, vAx, Dv = p
    u = @view r[:, :, 1]
    v = @view r[:, :, 2]
    du = @view dr[:, :, 1]
    dv = @view dr[:, :, 2]
    mul!(Ayu, Ay, u)
    mul!(uAx, u, Ax)
    mul!(Ayv, Ay, v)
    mul!(vAx, v, Ax)
    @. Du = D1 * (Ayu + uAx)
    @. Dv = D2 * (Ayv + vAx)
    @. du = Du + a * u * u ./ v + ubar - α * u
    @. dv = Dv + a * u * u - β * v
end
prob = ODEProblem(gm4!, r0, (0.0, 0.1), p)
@btime solve(prob, Tsit5());
  40.796 ms (1029 allocations: 29.66 MiB)

We could then use the BLAS gemmv to optimize the matrix multiplications some more, but instead let's devectorize the stencil.

p = (1.0, 1.0, 1.0, 10.0, 0.001, 100.0, N)
function fast_gm!(du, u, p, t)
    a, α, ubar, β, D1, D2, N = p

    @inbounds for j in 2:(N - 1), i in 2:(N - 1)
        du[i, j, 1] = D1 *
                      (u[i - 1, j, 1] + u[i + 1, j, 1] + u[i, j + 1, 1] + u[i, j - 1, 1] -
                       4u[i, j, 1]) +
                      a * u[i, j, 1]^2 / u[i, j, 2] + ubar - α * u[i, j, 1]
    end

    @inbounds for j in 2:(N - 1), i in 2:(N - 1)
        du[i, j, 2] = D2 *
                      (u[i - 1, j, 2] + u[i + 1, j, 2] + u[i, j + 1, 2] + u[i, j - 1, 2] -
                       4u[i, j, 2]) +
                      a * u[i, j, 1]^2 - β * u[i, j, 2]
    end

    @inbounds for j in 2:(N - 1)
        i = 1
        du[1, j, 1] = D1 *
                      (2u[i + 1, j, 1] + u[i, j + 1, 1] + u[i, j - 1, 1] - 4u[i, j, 1]) +
                      a * u[i, j, 1]^2 / u[i, j, 2] + ubar - α * u[i, j, 1]
    end
    @inbounds for j in 2:(N - 1)
        i = 1
        du[1, j, 2] = D2 *
                      (2u[i + 1, j, 2] + u[i, j + 1, 2] + u[i, j - 1, 2] - 4u[i, j, 2]) +
                      a * u[i, j, 1]^2 - β * u[i, j, 2]
    end
    @inbounds for j in 2:(N - 1)
        i = N
        du[end, j, 1] = D1 *
                        (2u[i - 1, j, 1] + u[i, j + 1, 1] + u[i, j - 1, 1] - 4u[i, j, 1]) +
                        a * u[i, j, 1]^2 / u[i, j, 2] + ubar - α * u[i, j, 1]
    end
    @inbounds for j in 2:(N - 1)
        i = N
        du[end, j, 2] = D2 *
                        (2u[i - 1, j, 2] + u[i, j + 1, 2] + u[i, j - 1, 2] - 4u[i, j, 2]) +
                        a * u[i, j, 1]^2 - β * u[i, j, 2]
    end

    @inbounds for i in 2:(N - 1)
        j = 1
        du[i, 1, 1] = D1 *
                      (u[i - 1, j, 1] + u[i + 1, j, 1] + 2u[i, j + 1, 1] - 4u[i, j, 1]) +
                      a * u[i, j, 1]^2 / u[i, j, 2] + ubar - α * u[i, j, 1]
    end
    @inbounds for i in 2:(N - 1)
        j = 1
        du[i, 1, 2] = D2 *
                      (u[i - 1, j, 2] + u[i + 1, j, 2] + 2u[i, j + 1, 2] - 4u[i, j, 2]) +
                      a * u[i, j, 1]^2 - β * u[i, j, 2]
    end
    @inbounds for i in 2:(N - 1)
        j = N
        du[i, end, 1] = D1 *
                        (u[i - 1, j, 1] + u[i + 1, j, 1] + 2u[i, j - 1, 1] - 4u[i, j, 1]) +
                        a * u[i, j, 1]^2 / u[i, j, 2] + ubar - α * u[i, j, 1]
    end
    @inbounds for i in 2:(N - 1)
        j = N
        du[i, end, 2] = D2 *
                        (u[i - 1, j, 2] + u[i + 1, j, 2] + 2u[i, j - 1, 2] - 4u[i, j, 2]) +
                        a * u[i, j, 1]^2 - β * u[i, j, 2]
    end

    @inbounds begin
        i = 1
        j = 1
        du[1, 1, 1] = D1 * (2u[i + 1, j, 1] + 2u[i, j + 1, 1] - 4u[i, j, 1]) +
                      a * u[i, j, 1]^2 / u[i, j, 2] + ubar - α * u[i, j, 1]
        du[1, 1, 2] = D2 * (2u[i + 1, j, 2] + 2u[i, j + 1, 2] - 4u[i, j, 2]) +
                      a * u[i, j, 1]^2 - β * u[i, j, 2]

        i = 1
        j = N
        du[1, N, 1] = D1 * (2u[i + 1, j, 1] + 2u[i, j - 1, 1] - 4u[i, j, 1]) +
                      a * u[i, j, 1]^2 / u[i, j, 2] + ubar - α * u[i, j, 1]
        du[1, N, 2] = D2 * (2u[i + 1, j, 2] + 2u[i, j - 1, 2] - 4u[i, j, 2]) +
                      a * u[i, j, 1]^2 - β * u[i, j, 2]

        i = N
        j = 1
        du[N, 1, 1] = D1 * (2u[i - 1, j, 1] + 2u[i, j + 1, 1] - 4u[i, j, 1]) +
                      a * u[i, j, 1]^2 / u[i, j, 2] + ubar - α * u[i, j, 1]
        du[N, 1, 2] = D2 * (2u[i - 1, j, 2] + 2u[i, j + 1, 2] - 4u[i, j, 2]) +
                      a * u[i, j, 1]^2 - β * u[i, j, 2]

        i = N
        j = N
        du[end, end, 1] = D1 * (2u[i - 1, j, 1] + 2u[i, j - 1, 1] - 4u[i, j, 1]) +
                          a * u[i, j, 1]^2 / u[i, j, 2] + ubar - α * u[i, j, 1]
        du[end, end, 2] = D2 * (2u[i - 1, j, 2] + 2u[i, j - 1, 2] - 4u[i, j, 2]) +
                          a * u[i, j, 1]^2 - β * u[i, j, 2]
    end
end
prob = ODEProblem(fast_gm!, r0, (0.0, 0.1), p)
@btime solve(prob, Tsit5());
  6.846 ms (441 allocations: 29.62 MiB)

Notice that in this case fusing the loops and avoiding the linear operators is a major improvement of about 10x! That's an order of magnitude faster than our original MATLAB/SciPy/R vectorized style code!

Since this is tedious to do by hand, we note that ModelingToolkit.jl's symbolic code generation can do this automatically from the basic version:

using ModelingToolkit
function basic_version!(dr, r, p, t)
    a, α, ubar, β, D1, D2 = p
    u = r[:, :, 1]
    v = r[:, :, 2]
    Du = D1 * (Ay * u + u * Ax)
    Dv = D2 * (Ay * v + v * Ax)
    dr[:, :, 1] = Du .+ a .* u .* u ./ v .+ ubar .- α * u
    dr[:, :, 2] = Dv .+ a .* u .* u .- β * v
end

a, α, ubar, β, D1, D2 = p
uss = (ubar + β) / α
vss = (a / β) * uss^2
r0 = zeros(100, 100, 2)
r0[:, :, 1] .= uss .+ 0.1 .* rand.()
r0[:, :, 2] .= vss

prob = ODEProblem(basic_version!, r0, (0.0, 0.1), p)
de = modelingtoolkitize(prob)

# Note jac=true,sparse=true makes it automatically build sparse Jacobian code
# as well!

fastprob = ODEProblem(de, [], (0.0, 0.1), jac = true, sparse = true)
ODEProblem with uType Vector{Float64} and tType Float64. In-place: true
timespan: (0.0, 0.1)
u0: 20000-element Vector{Float64}:
 11.083454624918392
 11.057404635106744
 11.08361703766581
 11.08423794006852
 11.081444880594812
 11.086902866461477
 11.064450586939909
 11.009875579944499
 11.002256634788974
 11.057871061312111
  ⋮
 12.100000000000001
 12.100000000000001
 12.100000000000001
 12.100000000000001
 12.100000000000001
 12.100000000000001
 12.100000000000001
 12.100000000000001
 12.100000000000001

Lastly, we can do other things like multithread the main loops. LoopVectorization.jl provides the @turbo macro for doing a lot of SIMD enhancements, and @tturbo is the multithreaded version.

Optimizing Algorithm Choices

The last thing to do is then ***optimize our algorithm choice***. We have been using Tsit5() as our test algorithm, but in reality this problem is a stiff PDE discretization and thus one recommendation is to use CVODE_BDF(). However, instead of using the default dense Jacobian, we should make use of the sparse Jacobian afforded by the problem. The Jacobian is the matrix $\frac{df_i}{dr_j}$, where $r$ is read by the linear index (i.e. down columns). But since the $u$ variables depend on the $v$, the band size here is large, and thus this will not do well with a Banded Jacobian solver. Instead, we utilize sparse Jacobian algorithms. CVODE_BDF allows us to use a sparse Newton-Krylov solver by setting linear_solver = :GMRES.

Note

The Solving Large Stiff Equations tutorial goes through these details. This is simply to give a taste of how much optimization opportunity is left on the table!

Let's see how our fast right-hand side scales as we increase the integration time.

prob = ODEProblem(fast_gm!, r0, (0.0, 10.0), p)
@btime solve(prob, Tsit5());
  747.445 ms (39332 allocations: 2.76 GiB)
using Sundials
@btime solve(prob, CVODE_BDF(linear_solver = :GMRES));
  219.891 ms (4571 allocations: 44.14 MiB)
prob = ODEProblem(fast_gm!, r0, (0.0, 100.0), p)
# Will go out of memory if we don't turn off `save_everystep`!
@btime solve(prob, Tsit5(), save_everystep = false);
  4.183 s (69 allocations: 2.90 MiB)
@btime solve(prob, CVODE_BDF(linear_solver = :GMRES), save_everystep = false);
  1.656 s (27484 allocations: 2.12 MiB)
prob = ODEProblem(fast_gm!, r0, (0.0, 500.0), p)
@btime solve(prob, CVODE_BDF(linear_solver = :GMRES), save_everystep = false);
  2.511 s (41531 allocations: 2.73 MiB)

Notice that we've eliminated almost all allocations, allowing the code to grow without hitting garbage collection and slowing down.

Why is CVODE_BDF doing well? What's happening is that, because the problem is stiff, the number of steps required by the explicit Runge-Kutta method grows rapidly, whereas CVODE_BDF is taking large steps. Additionally, the GMRES linear solver form is quite an efficient way to solve the implicit system in this case. This is problem-dependent, and in many cases using a Krylov method effectively requires a preconditioner, so you need to play around with testing other algorithms and linear solvers to find out what works best with your problem.

Now continue to the Solving Large Stiff Equations tutorial for more details on optimizing the algorithm choice for such codes.