Boundary Value Problems
This tutorial assumes you have read the Ordinary Differential Equations tutorial.
In this example, we will solve the ODE that satisfies the boundary condition in the form of
\[\begin{aligned} \frac{du}{dt} &= f(t, u) \\ g(u) &= \vec{0} \end{aligned}\]
Example 1: Simple Pendulum
The concrete example that we are solving is the simple pendulum $\ddot{u}+\frac{g}{L}sin(u)=0$ on the time interval $t\in[0,\frac{\pi}{2}]$. First, we need to define the ODE
using BoundaryValueDiffEq
using Plots
const g = 9.81
L = 1.0
tspan = (0.0, pi / 2)
function simplependulum!(du, u, p, t)
θ = u[1]
dθ = u[2]
du[1] = dθ
du[2] = -(g / L) * sin(θ)
end
simplependulum! (generic function with 1 method)
Boundary Condition
There are two problem types available:
- A problem type for general boundary conditions
BVProblem
(including conditions that may be anywhere/ everywhere on the integration interval). - A problem type for boundaries that are specified at the beginning and the end of the integration interval
TwoPointBVProblem
BVProblem
The boundary conditions are specified by a function that calculates the residual in-place from the problem solution, such that the residual is $\vec{0}$ when the boundary condition is satisfied.
function bc1!(residual, u, p, t)
residual[1] = u[end ÷ 2][1] + pi / 2 # the solution at the middle of the time span should be -pi/2
residual[2] = u[end][1] - pi / 2 # the solution at the end of the time span should be pi/2
end
bvp1 = BVProblem(simplependulum!, bc1!, [pi / 2, pi / 2], tspan)
sol1 = solve(bvp1, MIRK4(), dt = 0.05)
plot(sol1)
The third argument of BVProblem
is the initial guess of the solution, which is constant in this example.
<!– add examples of more general initial conditions –> We need to use MIRK4
or Shooting
methods to solve BVProblem
. MIRK4
is a collocation method, whereas Shooting
treats the problem as an IVP and varies the initial conditions until the boundary conditions are met. If you can have a good initial guess, Shooting
method works very well.
using OrdinaryDiffEq
u₀_2 = [-1.6, -1.7] # the initial guess
function bc3!(residual, sol, p, t)
residual[1] = sol(pi / 4)[1] + pi / 2 # use the interpolation here, since indexing will be wrong for adaptive methods
residual[2] = sol(pi / 2)[1] - pi / 2
end
bvp3 = BVProblem(simplependulum!, bc3!, u₀_2, tspan)
sol3 = solve(bvp3, Shooting(Vern7()))
retcode: Success
Interpolation: specialized 7th order lazy interpolation
t: 9-element Vector{Float64}:
0.0
0.1398696001024869
0.3086769508001044
0.49902697829228937
0.7378795288899709
1.0534502831823274
1.2811003843544997
1.5410164714181598
1.5707963267948966
u: 9-element Vector{Vector{Float64}}:
[-0.47542330224878443, -4.790776852834743]
[-1.0851247450779513, -3.8296320711770706]
[-1.5988291055106376, -2.2265414870026925]
[-1.8470632499328035, -0.39464892647169353]
[-1.6712472843880992, 1.881457492840527]
[-0.6093540735622439, 4.647142317794731]
[0.5075366667941525, 4.759617498326509]
[1.4965629936761005, 2.6386102054015534]
[1.5707963267948732, 2.346730301577318]
The initial guess can also be supplied via a function of t
or a previous solution type, this is especially handy for parameter analysis. We changed u
to sol
to emphasize the fact that in this case, the boundary condition can be written on the solution object. Thus, all the features on the solution type such as interpolations are available when using the Shooting
method. (i.e. you can have a boundary condition saying that the maximum over the interval is 1
using an optimization function on the continuous output). Note that user has to import the IVP solver before it can be used. Any common interface ODE solver is acceptable.
plot(sol3)
TwoPointBVProblem
TwoPointBVProblem
is operationally the same as BVProblem
but allows for the solver to specialize on the common form of being a two-point BVP, i.e. a BVP which only has boundary conditions at the start and the finish of the time interval. Defining a similar problem as TwoPointBVProblem
is shown in the following example:
function bc2a!(resid_a, u_a, p) # u_a is at the beginning of the time span
resid_a[1] = u_a[1] + pi / 2 # the solution at the beginning of the time span should be -pi/2
end
function bc2b!(resid_b, u_b, p) # u_b is at the ending of the time span
resid_b[1] = u_b[1] - pi / 2 # the solution at the end of the time span should be pi/2
end
bvp2 = TwoPointBVProblem(simplependulum!, (bc2a!, bc2b!), [pi / 2, pi / 2], tspan;
bcresid_prototype = (zeros(1), zeros(1)))
sol2 = solve(bvp2, MIRK4(), dt = 0.05)
plot(sol2)
Note here that bc2a!
is a boundary condition for the first time point, and bc2b!
is a boundary condition for the final time point. bcresid_prototype
is a prototype array which is passed in order to know the size of resid_a
and resid_b
. In this case, we have one residual term for the start and one for the final time point, and thus we have bcresid_prototype = (zeros(1), zeros(1))
. If we wanted to only have boundary conditions at the final time, we could instead have done bcresid_prototype = (zeros(0), zeros(2))
.