DiffEqNoiseProcess.jl: Noise Processes for Stochastic Modeling

DiffEqNoiseProcess.jl provides a comprehensive suite of noise processes for stochastic differential equations and random differential equations. The NoiseProcess types are distributionally-exact, meaning they are generated directly according to their analytical distributions rather than as solutions to SDEs.

Key Features

  • Mathematically rigorous: All processes maintain distributional exactness
  • Comprehensive collection: Wiener processes, Ornstein-Uhlenbeck, geometric Brownian motion, compound Poisson, and more
  • Flexible interface: Works seamlessly with the DifferentialEquations.jl ecosystem
  • Memory efficient: Includes virtual processes and wrappers for large-scale simulations
  • Bridging support: Conditional processes for specific boundary conditions

Installation

To install DiffEqNoiseProcess.jl, use the Julia package manager:

using Pkg
Pkg.add("DiffEqNoiseProcess")

Quick Start

Basic Wiener Process

Create and simulate a standard Brownian motion:

using DiffEqNoiseProcess, SciMLBase

# Create a Wiener process: WienerProcess(t0, W0, Z0)
W = WienerProcess(0.0, 0.0, 1.0)

# Simulate it over time interval [0, 1]
prob = NoiseProblem(W, (0.0, 1.0))
sol = solve(prob; dt = 0.01)

println("Final Brownian motion value: $(sol.u[end])")
Final Brownian motion value: -1.0876461595783575

Using Noise in SDE Problems

Noise processes integrate directly with SDE problems:

using SciMLBase

# Define SDE: dX = μX dt + σX dW (geometric Brownian motion)
f(u, p, t) = 0.05 * u  # 5% drift
g(u, p, t) = 0.2 * u   # 20% volatility

# Use custom geometric Brownian motion noise
gbm_noise = GeometricBrownianMotionProcess(0.05, 0.2, 0.0, 100.0, 100.0)

# Create SDE problem (would normally solve this)
# prob = SDEProblem(f, g, 100.0, (0.0, 1.0), noise = gbm_noise)
t: 1-element Vector{Float64}:
 0.0
u: 1-element Vector{Float64}:
 100.0

Ensemble Simulations

Generate multiple noise realizations:

# Create ensemble problem for Monte Carlo simulation
enprob = EnsembleProblem(prob)
ensemble_sol = solve(enprob; dt = 0.01, trajectories = 100)

println("Generated $(length(ensemble_sol.u)) noise trajectories")
Generated 100 noise trajectories

Available Noise Processes

DiffEqNoiseProcess.jl includes a rich collection of noise processes:

Classic Processes

  • WienerProcess: Standard Brownian motion
  • RealWienerProcess: Scalar Brownian motion
  • CorrelatedWienerProcess: Multi-dimensional correlated noise
  • OrnsteinUhlenbeckProcess: Mean-reverting process
  • GeometricBrownianMotionProcess: For financial modeling
  • CompoundPoissonProcess: Jump processes

Bridge Processes

  • BrownianBridge: Brownian motion with fixed endpoints
  • GeometricBrownianBridge: GBM with boundary conditions

Advanced Features

  • NoiseFunction: Custom noise from functions
  • NoiseGrid: Noise from pre-computed data
  • NoiseWrapper: Reuse previous simulations
  • VirtualBrownianTree: Memory-efficient alternative
  • NoiseApproximation: Colored noise via SDE solutions

Documentation Structure

This documentation is organized as follows:

Mathematical Foundation

All noise processes in this package maintain mathematical rigor through:

  1. Distributional exactness: Processes follow their theoretical distributions exactly
  2. Rejection Sampling with Memory (RSWM): Ensures correctness when adaptive stepping is used
  3. Proper bridging: Conditional processes respect boundary conditions
  4. Interpolation consistency: Values between grid points maintain distributional properties

Contributing

Reproducibility

The documentation of this SciML package was built using these direct dependencies,
Status `~/work/DiffEqNoiseProcess.jl/DiffEqNoiseProcess.jl/docs/Project.toml`
  [77a26b50] DiffEqNoiseProcess v5.26.0 `~/work/DiffEqNoiseProcess.jl/DiffEqNoiseProcess.jl`
  [31c24e10] Distributions v0.25.123
  [e30172f5] Documenter v1.16.1
  [0bca4576] SciMLBase v2.132.0
  [10745b16] Statistics v1.11.1
  [9a3f8284] Random v1.11.0
and using this machine and Julia version.
Julia Version 1.12.4
Commit 01a2eadb047 (2026-01-06 16:56 UTC)
Build Info:
  Official https://julialang.org release
Platform Info:
  OS: Linux (x86_64-linux-gnu)
  CPU: 4 × Intel(R) Xeon(R) Platinum 8370C CPU @ 2.80GHz
  WORD_SIZE: 64
  LLVM: libLLVM-18.1.7 (ORCJIT, icelake-server)
  GC: Built with stock GC
Threads: 1 default, 1 interactive, 1 GC (on 4 virtual cores)
A more complete overview of all dependencies and their versions is also provided.
Status `~/work/DiffEqNoiseProcess.jl/DiffEqNoiseProcess.jl/docs/Manifest.toml`
  [47edcb42] ADTypes v1.21.0
  [a4c015fc] ANSIColoredPrinters v0.0.1
  [1520ce14] AbstractTrees v0.4.5
  [7d9f7c33] Accessors v0.1.43
  [79e6a3ab] Adapt v4.4.0
  [66dad0bd] AliasTables v1.1.3
  [4fba245c] ArrayInterface v7.22.0
  [62783981] BitTwiddlingConvenienceFunctions v0.1.6
  [70df07ce] BracketingNonlinearSolve v1.6.2
  [2a0fbf3d] CPUSummary v0.2.7
  [fb6a15b2] CloseOpenIntervals v0.1.13
  [944b1d66] CodecZlib v0.7.8
  [38540f10] CommonSolve v0.2.6
  [f70d9fcc] CommonWorldInvalidations v1.0.0
  [34da2185] Compat v4.18.1
  [a33af91c] CompositionsBase v0.1.2
  [2569d6c7] ConcreteStructs v0.2.3
  [187b0558] ConstructionBase v1.6.0
  [adafc99b] CpuId v0.3.1
  [9a962f9c] DataAPI v1.16.0
  [864edb3b] DataStructures v0.19.3
  [2b5f629d] DiffEqBase v6.197.0
  [77a26b50] DiffEqNoiseProcess v5.26.0 `~/work/DiffEqNoiseProcess.jl/DiffEqNoiseProcess.jl`
  [a0c0ee7d] DifferentiationInterface v0.7.13
  [31c24e10] Distributions v0.25.123
  [ffbed154] DocStringExtensions v0.9.5
  [e30172f5] Documenter v1.16.1
  [4e289a0a] EnumX v1.0.5
  [f151be2c] EnzymeCore v0.8.18
  [e2ba6199] ExprTools v0.1.10
  [55351af7] ExproniconLite v0.10.14
  [7034ab61] FastBroadcast v0.3.5
  [9aa1b823] FastClosures v0.3.2
  [a4df4552] FastPower v1.3.0
  [1a297f60] FillArrays v1.15.0
  [069b7b12] FunctionWrappers v1.1.3
  [77dc65aa] FunctionWrappersWrappers v0.1.3
  [46192b85] GPUArraysCore v0.2.0
  [d7ba0133] Git v1.5.0
  [34004b35] HypergeometricFunctions v0.3.28
  [b5f81e59] IOCapture v1.0.0
  [615f187c] IfElse v0.1.1
  [3587e190] InverseFunctions v0.1.17
  [92d709cd] IrrationalConstants v0.2.6
  [82899510] IteratorInterfaceExtensions v1.0.0
  [692b3bcd] JLLWrappers v1.7.1
  [682c06a0] JSON v1.3.0
  [ae98c720] Jieko v0.2.1
  [10f19ff3] LayoutPointers v0.1.17
  [0e77f7df] LazilyInitializedFields v1.3.0
  [2ab3a3ac] LogExpFunctions v0.3.29
  [e6f89c97] LoggingExtras v1.2.0
  [1914dd2f] MacroTools v0.5.16
  [d125e4d3] ManualMemory v0.1.8
  [d0879d2d] MarkdownAST v0.1.2
  [bb5d69b7] MaybeInplace v0.1.4
  [e1d29d7a] Missings v1.2.0
  [2e0e35c7] Moshi v0.3.7
  [46d2c3a1] MuladdMacro v0.2.4
  [be0214bd] NonlinearSolveBase v2.9.1
  [bac558e1] OrderedCollections v1.8.1
  [90014a1f] PDMats v0.11.37
  [69de0a69] Parsers v2.8.3
  [e409e4f3] PoissonRandom v0.4.7
  [f517fe37] Polyester v0.7.18
  [1d0040c9] PolyesterWeave v0.2.2
  [d236fae5] PreallocationTools v1.0.0
  [aea7be01] PrecompileTools v1.3.3
  [21216c6a] Preferences v1.5.1
  [43287f4e] PtrArrays v1.3.0
  [1fd47b50] QuadGK v2.11.2
  [74087812] Random123 v1.7.1
  [e6cf234a] RandomNumbers v1.6.0
  [3cdcf5f2] RecipesBase v1.3.4
  [731186ca] RecursiveArrayTools v3.44.0
  [189a3867] Reexport v1.2.2
  [2792f1a3] RegistryInstances v0.1.0
  [ae029012] Requires v1.3.1
  [ae5879a3] ResettableStacks v1.2.0
  [79098fc4] Rmath v0.9.0
  [7e49a35a] RuntimeGeneratedFunctions v0.5.16
  [94e857df] SIMDTypes v0.1.0
  [0bca4576] SciMLBase v2.132.0
  [19f34311] SciMLJacobianOperators v0.1.12
  [a6db7da4] SciMLLogging v1.8.0
  [c0aeaf25] SciMLOperators v1.14.1
  [431bcebd] SciMLPublic v1.0.1
  [53ae85a6] SciMLStructures v1.10.0
  [efcf1570] Setfield v1.1.2
  [a2af1166] SortingAlgorithms v1.2.2
  [276daf66] SpecialFunctions v2.6.1
  [aedffcd0] Static v1.3.1
  [0d7ed370] StaticArrayInterface v1.8.0
  [90137ffa] StaticArrays v1.9.16
  [1e83bf80] StaticArraysCore v1.4.4
  [10745b16] Statistics v1.11.1
  [82ae8749] StatsAPI v1.8.0
  [2913bbd2] StatsBase v0.34.10
  [4c63d2b9] StatsFuns v1.5.2
  [7792a7ef] StrideArraysCore v0.5.8
  [ec057cc2] StructUtils v2.6.1
  [2efcf032] SymbolicIndexingInterface v0.3.46
  [8290d209] ThreadingUtilities v0.5.5
  [a759f4b9] TimerOutputs v0.5.29
  [3bb67fe8] TranscodingStreams v0.11.3
  [781d530d] TruncatedStacktraces v1.4.0
  [2e619515] Expat_jll v2.7.3+0
  [020c3dae] Git_LFS_jll v3.7.0+0
  [f8c6e375] Git_jll v2.52.0+0
  [94ce4f54] Libiconv_jll v1.18.0+0
  [9bd350c2] OpenSSH_jll v10.2.1+0
  [efe28fd5] OpenSpecFun_jll v0.5.6+0
  [f50d1b31] Rmath_jll v0.5.1+0
  [0dad84c5] ArgTools v1.1.2
  [56f22d72] Artifacts v1.11.0
  [2a0f44e3] Base64 v1.11.0
  [ade2ca70] Dates v1.11.0
  [8ba89e20] Distributed v1.11.0
  [f43a241f] Downloads v1.7.0
  [7b1f6079] FileWatching v1.11.0
  [9fa8497b] Future v1.11.0
  [b77e0a4c] InteractiveUtils v1.11.0
  [ac6e5ff7] JuliaSyntaxHighlighting v1.12.0
  [b27032c2] LibCURL v0.6.4
  [76f85450] LibGit2 v1.11.0
  [8f399da3] Libdl v1.11.0
  [37e2e46d] LinearAlgebra v1.12.0
  [56ddb016] Logging v1.11.0
  [d6f4376e] Markdown v1.11.0
  [ca575930] NetworkOptions v1.3.0
  [44cfe95a] Pkg v1.12.1
  [de0858da] Printf v1.11.0
  [3fa0cd96] REPL v1.11.0
  [9a3f8284] Random v1.11.0
  [ea8e919c] SHA v0.7.0
  [9e88b42a] Serialization v1.11.0
  [6462fe0b] Sockets v1.11.0
  [2f01184e] SparseArrays v1.12.0
  [f489334b] StyledStrings v1.11.0
  [4607b0f0] SuiteSparse
  [fa267f1f] TOML v1.0.3
  [a4e569a6] Tar v1.10.0
  [8dfed614] Test v1.11.0
  [cf7118a7] UUIDs v1.11.0
  [4ec0a83e] Unicode v1.11.0
  [e66e0078] CompilerSupportLibraries_jll v1.3.0+1
  [deac9b47] LibCURL_jll v8.15.0+0
  [e37daf67] LibGit2_jll v1.9.0+0
  [29816b5a] LibSSH2_jll v1.11.3+1
  [14a3606d] MozillaCACerts_jll v2025.11.4
  [4536629a] OpenBLAS_jll v0.3.29+0
  [05823500] OpenLibm_jll v0.8.7+0
  [458c3c95] OpenSSL_jll v3.5.4+0
  [efcefdf7] PCRE2_jll v10.44.0+1
  [bea87d4a] SuiteSparse_jll v7.8.3+2
  [83775a58] Zlib_jll v1.3.1+2
  [8e850b90] libblastrampoline_jll v5.15.0+0
  [8e850ede] nghttp2_jll v1.64.0+1
  [3f19e933] p7zip_jll v17.7.0+0

You can also download the manifest file and the project file.