HighDimPDE.PIDEProblem
— TypePIDEProblem(
μ,
σ,
x0,
tspan,
g,
f;
p,
x0_sample,
neumann_bc,
kw...
)
Defines a Partial Integro Differential Problem, of the form
\[\begin{aligned} \frac{du}{dt} &= \tfrac{1}{2} \text{Tr}(\sigma \sigma^T) \Delta u(x, t) + \mu \nabla u(x, t) \\ &\quad + \int f(x, y, u(x, t), u(y, t), ( \nabla_x u )(x, t), ( \nabla_x u )(y, t), p, t) dy, \end{aligned}\]
with $u(x,0) = g(x)$.
Arguments
g
: initial condition, of the formg(x, p, t)
.f
: nonlinear function, of the formf(x, y, u(x, t), u(y, t), ∇u(x, t), ∇u(y, t), p, t)
.μ
: drift function, of the formμ(x, p, t)
.σ
: diffusion functionσ(x, p, t)
.x
: point whereu(x,t)
is approximated. Is required even in the case wherex0_sample
is provided. Determines the dimensionality of the PDE.tspan
: timespan of the problem.p
: the parameter vector.x0_sample
: sampling method forx0
. Can beUniformSampling(a,b)
,NormalSampling(σ_sampling, shifted)
, orNoSampling
(by default). IfNoSampling
, only solution at the single pointx
is evaluated.neumann_bc
: if provided, Neumann boundary conditions on the hypercubeneumann_bc[1] × neumann_bc[2]
.
HighDimPDE.ParabolicPDEProblem
— TypeParabolicPDEProblem(
μ,
σ,
x0,
tspan;
g,
f,
p,
xspan,
x0_sample,
neumann_bc,
payoff,
kw...
)
Defines a Parabolic Partial Differential Equation of the form:
\[\begin{aligned} \frac{du}{dt} &= \tfrac{1}{2} \text{Tr}(\sigma \sigma^T) \Delta u(x, t) + \mu \nabla u(x, t) \\ &\quad + f(x, u(x, t), ( \nabla_x u )(x, t), p, t) \end{aligned}\]
- Semilinear Parabolic Partial Differential Equation
- f -> f(X, u, σᵀ∇u, p, t)
- Kolmogorov Differential Equation
- f ->
nothing
- x0 -> nothing, xspan must be provided.
- f ->
- Obstacle Partial Differential Equation
- f ->
nothing
- g ->
nothing
- discounted payoff function provided.
- f ->
Arguments
μ
: drift function, of the formμ(x, p, t)
.σ
: diffusion functionσ(x, p, t)
.x
: point whereu(x,t)
is approximated. Is required even in the case wherex0_sample
is provided. Determines the dimensionality of the PDE.tspan
: timespan of the problem.g
: initial condition, of the formg(x, p, t)
.f
: nonlinear function, of the formf(X, u, σᵀ∇u, p, t)
Optional Arguments
p
: the parameter vector.x0_sample
: sampling method forx0
. Can beUniformSampling(a,b)
,NormalSampling(σ_sampling, shifted)
, orNoSampling
(by default). IfNoSampling
, only solution at the single pointx
is evaluated.neumann_bc
: if provided, Neumann boundary conditions on the hypercubeneumann_bc[1] × neumann_bc[2]
.xspan
: The domain of the independent variablex
payoff
: The discounted payoff function. Required when solving for optimal stopping problem (Obstacle PDEs).
While choosing to define a PDE using PIDEProblem
, note that the function being integrated f
is a function of f(x, y, v_x, v_y, ∇v_x, ∇v_y)
out of which y
is the integrating variable and x
is constant throughout the integration. If a PDE has no integral and the non linear term f
is just evaluated as f(x, v_x, ∇v_x)
then we suggest using ParabolicPDEProblem