Steady state of SIS (suspected-infected-suspected) reaction-diffusion model
Considering the following SIS reaction diffusion model:
\[\left\{\begin{array}{l} S_{t} = d_{S} S_{x x}-\beta(x) \frac{S I}{S+I}+\gamma(x) I=0, \quad 0<x<1 \\ I_{t} = d_{I} I_{x x}+\beta(x) \frac{S I}{S+I}-\gamma(x) I=0, \quad 0<x<1 \\ S_{x}=I_{x}=0, \quad x=0,1, \end{array}\right.\]
where $\int_{0}^{1} S(x,t)+I(x,t)dx = 1$. $S(x,t)$ and $I(x,t)$ denote the density of susceptible and infected populations at location $x$ and time $t$, $d_{S}$ and $d_{I}$ represent the diffusion coefficients for susceptible and infected individuals, and $\beta(x)$, $\gamma(x)$ are transmission and recovery rates at $x$, respectively.
We want to solve the steady state problem (same notations for convenience):
\[\left\{\begin{array}{l} d_{S} S_{x x}-\beta(x) \frac{S I}{S+I}+\gamma(x) I=0, \quad 0<x<1 \\ d_{I} I_{x x}+\beta(x) \frac{S I}{S+I}-\gamma(x) I=0, \quad 0<x<1 \\ S_{x}=I_{x}=0, \quad x=0,1, \end{array}\right.\]
where $\int_{0}^{1} S(x)+I(x)dx = 1$.
Note here elliptic problem has condition $\int_{0}^{1} S(x)+I(x)dx = 1$.
using DifferentialEquations, ModelingToolkit, MethodOfLines, DomainSets, Plots
# Parameters, variables, and derivatives
@parameters t x
@parameters dS dI brn ϵ
@variables S(..) I(..)
Dt = Differential(t)
Dx = Differential(x)
Dxx = Differential(x)^2
# Define functions
function γ(x)
y = x + 1.0
return y
end
function ratio(x, brn, ϵ)
y = brn + ϵ * sin(2 * pi * x)
return y
end
# 1D PDE and boundary conditions
eq = [Dt(S(t, x)) ~ dS * Dxx(S(t, x)) - ratio(x, brn, ϵ) * γ(x) * S(t, x) * I(t, x) / (S(t, x) + I(t, x)) + γ(x) * I(t, x),
Dt(I(t, x)) ~ dI * Dxx(I(t, x)) + ratio(x, brn, ϵ) * γ(x) * S(t, x) * I(t, x) / (S(t, x) + I(t, x)) - γ(x) * I(t, x)]
bcs = [S(0, x) ~ 0.9 + 0.1 * sin(2 * pi * x),
I(0, x) ~ 0.1 + 0.1 * cos(2 * pi * x),
Dx(S(t, 0)) ~ 0.0,
Dx(S(t, 1)) ~ 0.0,
Dx(I(t, 0)) ~ 0.0,
Dx(I(t, 1)) ~ 0.0]
# Space and time domains
domains = [t ∈ Interval(0.0, 10.0),
x ∈ Interval(0.0, 1.0)]
# PDE system
@named pdesys = PDESystem(eq, bcs, domains, [t, x], [S(t, x), I(t, x)], [dS => 0.5, dI => 0.1, brn => 3, ϵ => 0.1])
# Method of lines discretization
# Need a small dx here for accuracy
dx = 0.01
order = 2
discretization = MOLFiniteDifference([x => dx], t)
# Convert the PDE problem into an ODE problem
prob = discretize(pdesys, discretization);
ODEProblem with uType Vector{Float64} and tType Float64. In-place: true
timespan: (0.0, 10.0)
u0: 198-element Vector{Float64}:
0.9062790519529313
0.9125333233564304
0.9187381314585725
0.9248689887164855
0.9309016994374948
0.9368124552684678
0.9425779291565073
0.9481753674101716
0.9535826794978997
0.9587785252292473
⋮
0.18443279255020154
0.18763066800438638
0.190482705246602
0.19297764858882513
0.19510565162951538
0.1968583161128631
0.19822872507286887
0.1992114701314478
0.19980267284282716
Solving time-dependent SIS epidemic model
# Solving SIS reaction diffusion model
sol = solve(prob, Tsit5(), saveat=0.2);
# Retriving the results
discrete_x = sol[x]
discrete_t = sol[t]
S_solution = sol[S(t, x)]
I_solution = sol[I(t, x)]
p = surface(discrete_x, discrete_t, S_solution)
display(p)
Solving steady state problem
Change the elliptic problem to steady state problem of reaction diffusion equation.
See more solvers in Steady State Solvers · DifferentialEquations.jl
steadystateprob = SteadyStateProblem(prob)
steadystate = solve(steadystateprob, DynamicSS(Tsit5()))
retcode: Failure
u: 198-element Vector{Float64}:
0.3317836646210077
0.3317732755346262
0.3317891113928477
0.33175474345802314
0.33179088720150746
0.33173373143278306
0.33179111779052045
0.33171244226430213
0.33179191509999756
0.3316930492696892
⋮
0.6560941213703403
0.6561639796904541
0.6562347277323771
0.6563041441210961
0.6563698199305195
0.6564293278188778
0.6564800894273904
0.656519489448634
0.656544799858111
The effect of human mobility on endemic size
Set the endemic size $f(d_{S},d_{I}) = \int_{0}^{1}I(x;d_{S},d_{I}).$
function episize!(dS, dI)
newprob = remake(prob, p=[dS, dI, 3, 0.1])
steadystateprob = SteadyStateProblem(newprob)
state = solve(steadystateprob, DynamicSS(Tsit5()))
y = sum(state[100:end]) / 99
return y
end
episize!(exp(1.0),exp(0.5))
0.6656214868928503
References:
- Allen L J S, Bolker B M, Lou Y, et al. Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion model[J]. Discrete & Continuous Dynamical Systems, 2008, 21(1): 1.