Automated Sparse Analytical Jacobians
In many cases where you have large stiff differential equations, getting a sparse Jacobian can be essential for performance. In this tutorial, we will show how to use modelingtoolkitize
to regenerate an ODEProblem
code with the analytical solution to the sparse Jacobian, along with the sparsity pattern required by DifferentialEquations.jl's solvers to specialize the solving process.
First, let's start out with an implementation of the 2-dimensional Brusselator partial differential equation discretized using finite differences:
using OrdinaryDiffEq, ModelingToolkit
const N = 32
const xyd_brusselator = range(0, stop = 1, length = N)
brusselator_f(x, y, t) = (((x - 0.3)^2 + (y - 0.6)^2) <= 0.1^2) * (t >= 1.1) * 5.0
limit(a, N) = a == N + 1 ? 1 : a == 0 ? N : a
function brusselator_2d_loop(du, u, p, t)
A, B, alpha, dx = p
alpha = alpha / dx^2
@inbounds for I in CartesianIndices((N, N))
i, j = Tuple(I)
x, y = xyd_brusselator[I[1]], xyd_brusselator[I[2]]
ip1, im1, jp1, jm1 = limit(i + 1, N), limit(i - 1, N), limit(j + 1, N),
limit(j - 1, N)
du[i, j, 1] = alpha * (u[im1, j, 1] + u[ip1, j, 1] + u[i, jp1, 1] + u[i, jm1, 1] -
4u[i, j, 1]) +
B + u[i, j, 1]^2 * u[i, j, 2] - (A + 1) * u[i, j, 1] +
brusselator_f(x, y, t)
du[i, j, 2] = alpha * (u[im1, j, 2] + u[ip1, j, 2] + u[i, jp1, 2] + u[i, jm1, 2] -
4u[i, j, 2]) +
A * u[i, j, 1] - u[i, j, 1]^2 * u[i, j, 2]
end
end
p = (3.4, 1.0, 10.0, step(xyd_brusselator))
function init_brusselator_2d(xyd)
N = length(xyd)
u = zeros(N, N, 2)
for I in CartesianIndices((N, N))
x = xyd[I[1]]
y = xyd[I[2]]
u[I, 1] = 22 * (y * (1 - y))^(3 / 2)
u[I, 2] = 27 * (x * (1 - x))^(3 / 2)
end
u
end
u0 = init_brusselator_2d(xyd_brusselator)
prob = ODEProblem(brusselator_2d_loop, u0, (0.0, 11.5), p)
ODEProblem with uType Array{Float64, 3} and tType Float64. In-place: true
Non-trivial mass matrix: false
timespan: (0.0, 11.5)
u0: 32×32×2 Array{Float64, 3}:
[:, :, 1] =
0.0 0.121344 0.326197 0.568534 … 0.568534 0.326197 0.121344 0.0
0.0 0.121344 0.326197 0.568534 0.568534 0.326197 0.121344 0.0
0.0 0.121344 0.326197 0.568534 0.568534 0.326197 0.121344 0.0
0.0 0.121344 0.326197 0.568534 0.568534 0.326197 0.121344 0.0
0.0 0.121344 0.326197 0.568534 0.568534 0.326197 0.121344 0.0
0.0 0.121344 0.326197 0.568534 … 0.568534 0.326197 0.121344 0.0
0.0 0.121344 0.326197 0.568534 0.568534 0.326197 0.121344 0.0
0.0 0.121344 0.326197 0.568534 0.568534 0.326197 0.121344 0.0
0.0 0.121344 0.326197 0.568534 0.568534 0.326197 0.121344 0.0
0.0 0.121344 0.326197 0.568534 0.568534 0.326197 0.121344 0.0
⋮ ⋱ ⋮
0.0 0.121344 0.326197 0.568534 0.568534 0.326197 0.121344 0.0
0.0 0.121344 0.326197 0.568534 0.568534 0.326197 0.121344 0.0
0.0 0.121344 0.326197 0.568534 … 0.568534 0.326197 0.121344 0.0
0.0 0.121344 0.326197 0.568534 0.568534 0.326197 0.121344 0.0
0.0 0.121344 0.326197 0.568534 0.568534 0.326197 0.121344 0.0
0.0 0.121344 0.326197 0.568534 0.568534 0.326197 0.121344 0.0
0.0 0.121344 0.326197 0.568534 0.568534 0.326197 0.121344 0.0
0.0 0.121344 0.326197 0.568534 … 0.568534 0.326197 0.121344 0.0
0.0 0.121344 0.326197 0.568534 0.568534 0.326197 0.121344 0.0
[:, :, 2] =
0.0 0.0 0.0 0.0 … 0.0 0.0 0.0
0.148923 0.148923 0.148923 0.148923 0.148923 0.148923 0.148923
0.400332 0.400332 0.400332 0.400332 0.400332 0.400332 0.400332
0.697746 0.697746 0.697746 0.697746 0.697746 0.697746 0.697746
1.01722 1.01722 1.01722 1.01722 1.01722 1.01722 1.01722
1.34336 1.34336 1.34336 1.34336 … 1.34336 1.34336 1.34336
1.66501 1.66501 1.66501 1.66501 1.66501 1.66501 1.66501
1.97352 1.97352 1.97352 1.97352 1.97352 1.97352 1.97352
2.26207 2.26207 2.26207 2.26207 2.26207 2.26207 2.26207
2.52509 2.52509 2.52509 2.52509 2.52509 2.52509 2.52509
⋮ ⋱ ⋮
2.26207 2.26207 2.26207 2.26207 2.26207 2.26207 2.26207
1.97352 1.97352 1.97352 1.97352 1.97352 1.97352 1.97352
1.66501 1.66501 1.66501 1.66501 … 1.66501 1.66501 1.66501
1.34336 1.34336 1.34336 1.34336 1.34336 1.34336 1.34336
1.01722 1.01722 1.01722 1.01722 1.01722 1.01722 1.01722
0.697746 0.697746 0.697746 0.697746 0.697746 0.697746 0.697746
0.400332 0.400332 0.400332 0.400332 0.400332 0.400332 0.400332
0.148923 0.148923 0.148923 0.148923 … 0.148923 0.148923 0.148923
0.0 0.0 0.0 0.0 0.0 0.0 0.0
Now let's use modelingtoolkitize
to generate the symbolic version:
@mtkbuild sys = modelingtoolkitize(prob);
Now we regenerate the problem using jac=true
for the analytical Jacobian and sparse=true
to make it sparse:
sparseprob = ODEProblem(sys, Pair[], (0.0, 11.5), jac = true, sparse = true)
ODEProblem with uType Vector{Float64} and tType Float64. In-place: true
Initialization status: FULLY_DETERMINED
Non-trivial mass matrix: false
timespan: (0.0, 11.5)
u0: 2048-element Vector{Float64}:
0.0
0.0
0.5685341132743709
0.0
0.0
0.0
0.0
0.0
0.0
0.0
⋮
0.1213443281371586
0.1213443281371586
0.0
0.0
0.0
0.0
0.0
0.0
0.0
Hard? No! How much did that help?
using BenchmarkTools
@btime solve(prob, save_everystep = false);
11.068 s (1457199 allocations: 500.82 MiB)
@btime solve(sparseprob, save_everystep = false);
10.758 s (109851 allocations: 534.75 MiB)
Notice though that the analytical solution to the Jacobian can be quite expensive. Thus in some cases we may only want to get the sparsity pattern. In this case, we can simply do:
sparsepatternprob = ODEProblem(sys, Pair[], (0.0, 11.5), sparse = true)
@btime solve(sparsepatternprob, save_everystep = false);
10.713 s (109768 allocations: 534.77 MiB)