ModelingToolkitStandardLibrary: Magnetic Components
Index
- ModelingToolkitStandardLibrary.Magnetic.FluxTubes.ConstantMagneticFlux
- ModelingToolkitStandardLibrary.Magnetic.FluxTubes.ConstantMagneticPotentialDifference
- ModelingToolkitStandardLibrary.Magnetic.FluxTubes.ConstantPermeance
- ModelingToolkitStandardLibrary.Magnetic.FluxTubes.ConstantReluctance
- ModelingToolkitStandardLibrary.Magnetic.FluxTubes.Crossing
- ModelingToolkitStandardLibrary.Magnetic.FluxTubes.EddyCurrent
- ModelingToolkitStandardLibrary.Magnetic.FluxTubes.ElectroMagneticConverter
- ModelingToolkitStandardLibrary.Magnetic.FluxTubes.Ground
- ModelingToolkitStandardLibrary.Magnetic.FluxTubes.Idle
- ModelingToolkitStandardLibrary.Magnetic.FluxTubes.NegativeMagneticPort
- ModelingToolkitStandardLibrary.Magnetic.FluxTubes.PositiveMagneticPort
- ModelingToolkitStandardLibrary.Magnetic.FluxTubes.Short
- ModelingToolkitStandardLibrary.Magnetic.FluxTubes.TwoPort
Flux Tubes
Flux Tube Utilities
ModelingToolkitStandardLibrary.Magnetic.FluxTubes.PositiveMagneticPort — ConstantPositive magnetic port
ModelingToolkitStandardLibrary.Magnetic.FluxTubes.NegativeMagneticPort — ConstantNegative magnetic port
ModelingToolkitStandardLibrary.Magnetic.FluxTubes.TwoPort — ConstantTwoPort(; name, V_m = 0.0, Phi = 0.0)Partial component with magnetic potential difference between two magnetic ports p and n and magnetic flux Phi from p to n.
Parameters:
- V_m: Initial magnetic potential difference between both ports
- Phi: Initial magnetic flux from portp to portn
Basic Flux Tube Blocks
ModelingToolkitStandardLibrary.Magnetic.FluxTubes.Ground — ConstantGround(; name)Zero magnetic potential.
ModelingToolkitStandardLibrary.Magnetic.FluxTubes.Idle — ConstantIdle(;name)Idle running branch.
ModelingToolkitStandardLibrary.Magnetic.FluxTubes.Short — ConstantShort(;name)Short cut branch.
ModelingToolkitStandardLibrary.Magnetic.FluxTubes.Crossing — ConstantCrossing(;name)Crossing of two branches.
This is a simple crossing of two branches. The ports portp1 and portp2 are connected, as well as portn1 and portn2.
ModelingToolkitStandardLibrary.Magnetic.FluxTubes.ConstantPermeance — ConstantConstantPermeance(; name, G_m = 1.0)Constant permeance.
Parameters:
- G_m: [H] Magnetic permeance
ModelingToolkitStandardLibrary.Magnetic.FluxTubes.ConstantReluctance — ConstantConstantReluctance(; name, R_m = 1.0)Constant reluctance.
Parameters:
- R_m: [H^-1] Magnetic reluctance
ModelingToolkitStandardLibrary.Magnetic.FluxTubes.EddyCurrent — ConstantEddyCurrent(;name, Phi, rho = 0.098e-6, l = 1, A = 1)For modelling of eddy current in a conductive magnetic flux tube. Initial magnetic flux flowing into the port_p can be set with Phi ([Wb])
Parameters:
- rho: [ohm * m] Resistivity of flux tube material (default: Iron at 20degC)
- l: [m] Average length of eddy current path
- A: [m^2] Cross sectional area of eddy current path
ModelingToolkitStandardLibrary.Magnetic.FluxTubes.ElectroMagneticConverter — ConstantElectroMagneticConverter(; name, N, Phi)Ideal electromagnetic energy conversion.
The electromagnetic energy conversion is given by Ampere's law and Faraday's law respectively V_m = N * i N * dΦ/dt = -v
Initial magnetic flux flowing into the port_p can be set with Phi ([Wb])
Parameters:
- N: Number of turns
Flux Tube Sources
ModelingToolkitStandardLibrary.Magnetic.FluxTubes.ConstantMagneticPotentialDifference — ConstantConstantMagneticPotentialDifference(; name, V_m = 0.0)Constant magnetomotive force.
Parameters:
- V_m: [A] Magnetic potential difference
ModelingToolkitStandardLibrary.Magnetic.FluxTubes.ConstantMagneticFlux — ConstantConstantMagneticFlux(; name, Phi = 0.0)Source of constant magnetic flux.
Parameters:
- Phi: [Wb] Magnetic flux