ModelingToolkitStandardLibrary: Magnetic Components
Index
ModelingToolkitStandardLibrary.Magnetic.FluxTubes.ConstantMagneticFluxModelingToolkitStandardLibrary.Magnetic.FluxTubes.ConstantMagneticPotentialDifferenceModelingToolkitStandardLibrary.Magnetic.FluxTubes.ConstantPermeanceModelingToolkitStandardLibrary.Magnetic.FluxTubes.ConstantReluctanceModelingToolkitStandardLibrary.Magnetic.FluxTubes.CrossingModelingToolkitStandardLibrary.Magnetic.FluxTubes.EddyCurrentModelingToolkitStandardLibrary.Magnetic.FluxTubes.ElectroMagneticConverterModelingToolkitStandardLibrary.Magnetic.FluxTubes.GroundModelingToolkitStandardLibrary.Magnetic.FluxTubes.IdleModelingToolkitStandardLibrary.Magnetic.FluxTubes.NegativeMagneticPortModelingToolkitStandardLibrary.Magnetic.FluxTubes.PositiveMagneticPortModelingToolkitStandardLibrary.Magnetic.FluxTubes.ShortModelingToolkitStandardLibrary.Magnetic.FluxTubes.TwoPort
Flux Tubes
Flux Tube Utilities
ModelingToolkitStandardLibrary.Magnetic.FluxTubes.PositiveMagneticPort — ConstantPositive magnetic port
ModelingToolkitStandardLibrary.Magnetic.FluxTubes.NegativeMagneticPort — ConstantNegative magnetic port
ModelingToolkitStandardLibrary.Magnetic.FluxTubes.TwoPort — ConstantTwoPort(; name, V_m = 0.0, Phi = 0.0)Partial component with magnetic potential difference between two magnetic ports p and n and magnetic flux Phi from p to n.
Parameters:
V_m: Initial magnetic potential difference between both portsPhi: Initial magnetic flux from portp to portn
Basic Flux Tube Blocks
ModelingToolkitStandardLibrary.Magnetic.FluxTubes.Ground — ConstantGround(; name)Zero magnetic potential.
ModelingToolkitStandardLibrary.Magnetic.FluxTubes.Idle — ConstantIdle(;name)Idle running branch.
ModelingToolkitStandardLibrary.Magnetic.FluxTubes.Short — ConstantShort(;name)Short cut branch.
ModelingToolkitStandardLibrary.Magnetic.FluxTubes.Crossing — ConstantCrossing(;name)Crossing of two branches.
This is a simple crossing of two branches. The ports portp1 and portp2 are connected, as well as portn1 and portn2.
ModelingToolkitStandardLibrary.Magnetic.FluxTubes.ConstantPermeance — ConstantConstantPermeance(; name, G_m = 1.0)Constant permeance.
Parameters:
G_m: [H] Magnetic permeance
ModelingToolkitStandardLibrary.Magnetic.FluxTubes.ConstantReluctance — ConstantConstantReluctance(; name, R_m = 1.0)Constant reluctance.
Parameters:
R_m: [H^-1] Magnetic reluctance
ModelingToolkitStandardLibrary.Magnetic.FluxTubes.EddyCurrent — ConstantEddyCurrent(;name, Phi, rho = 0.098e-6, l = 1, A = 1)For modelling of eddy current in a conductive magnetic flux tube. Initial magnetic flux flowing into the port_p can be set with Phi ([Wb])
Parameters:
rho: [ohm * m] Resistivity of flux tube material (default: Iron at 20degC)l: [m] Average length of eddy current pathA: [m^2] Cross sectional area of eddy current path
ModelingToolkitStandardLibrary.Magnetic.FluxTubes.ElectroMagneticConverter — ConstantElectroMagneticConverter(; name, N, Phi)Ideal electromagnetic energy conversion.
The electromagnetic energy conversion is given by Ampere's law and Faraday's law respectively V_m = N * i N * dΦ/dt = -v
Initial magnetic flux flowing into the port_p can be set with Phi ([Wb])
Parameters:
N: Number of turns
Flux Tube Sources
ModelingToolkitStandardLibrary.Magnetic.FluxTubes.ConstantMagneticPotentialDifference — ConstantConstantMagneticPotentialDifference(; name, V_m = 0.0)Constant magnetomotive force.
Parameters:
V_m: [A] Magnetic potential difference
ModelingToolkitStandardLibrary.Magnetic.FluxTubes.ConstantMagneticFlux — ConstantConstantMagneticFlux(; name, Phi = 0.0)Source of constant magnetic flux.
Parameters:
Phi: [Wb] Magnetic flux