PETSc SNES Example 2
This implements src/snes/examples/tutorials/ex2.c
from PETSc and examples/SNES_ex2.jl
from PETSc.jl using automatic sparsity detection and automatic differentiation using NonlinearSolve.jl
.
This solves the equations sequentially. Newton method to solve u'' + u^{2} = f
, sequentially.
using NonlinearSolve, PETSc, LinearAlgebra, SparseConnectivityTracer, BenchmarkTools
u0 = fill(0.5, 128)
function form_residual!(resid, x, _)
n = length(x)
xp = LinRange(0.0, 1.0, n)
F = 6xp .+ (xp .+ 1e-12) .^ 6
dx = 1 / (n - 1)
resid[1] = x[1]
for i in 2:(n - 1)
resid[i] = (x[i - 1] - 2x[i] + x[i + 1]) / dx^2 + x[i] * x[i] - F[i]
end
resid[n] = x[n] - 1
return
end
form_residual! (generic function with 1 method)
To use automatic sparsity detection, we need to specify sparsity
keyword argument to NonlinearFunction
. See Automatic Sparsity Detection for more details.
nlfunc_dense = NonlinearFunction(form_residual!)
nlfunc_sparse = NonlinearFunction(form_residual!; sparsity = TracerSparsityDetector())
nlprob_dense = NonlinearProblem(nlfunc_dense, u0)
nlprob_sparse = NonlinearProblem(nlfunc_sparse, u0)
NonlinearProblem with uType Vector{Float64}. In-place: true
u0: 128-element Vector{Float64}:
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
⋮
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
Now we can solve the problem using PETScSNES
or with one of the native NonlinearSolve.jl
solvers.
sol_dense_nr = solve(nlprob_dense, NewtonRaphson(); abstol = 1e-8)
sol_dense_snes = solve(nlprob_dense, PETScSNES(); abstol = 1e-8)
sol_dense_nr .- sol_dense_snes
128-element Vector{Float64}:
4.1386421557519005e-19
-2.1053427420479262e-17
-4.252105395216588e-17
-6.398825696737886e-17
-8.545545998259185e-17
-1.0692266299780484e-16
-1.2839664227659586e-16
-1.4986384529180885e-16
-1.713039432527097e-16
-1.927711462679227e-16
⋮
-6.661338147750939e-16
-6.661338147750939e-16
-5.551115123125783e-16
-4.440892098500626e-16
-3.3306690738754696e-16
-2.220446049250313e-16
-1.1102230246251565e-16
-1.1102230246251565e-16
0.0
sol_sparse_nr = solve(nlprob_sparse, NewtonRaphson(); abstol = 1e-8)
sol_sparse_snes = solve(nlprob_sparse, PETScSNES(); abstol = 1e-8)
sol_sparse_nr .- sol_sparse_snes
128-element Vector{Float64}:
-1.9281866869109483e-42
-6.886907256769496e-18
-1.3773602755302178e-17
-2.0660827649426894e-17
-2.755228770828788e-17
-3.4436971503570835e-17
-4.132165529885379e-17
-4.819278656698067e-17
-5.51316804708879e-17
-6.196215415754658e-17
⋮
-5.551115123125783e-16
-4.440892098500626e-16
-4.440892098500626e-16
-3.3306690738754696e-16
-2.220446049250313e-16
-2.220446049250313e-16
-1.1102230246251565e-16
0.0
0.0
As expected the solutions are the same (upto floating point error). Now let's compare the runtimes.
Runtimes
Dense Jacobian
@benchmark solve($(nlprob_dense), $(NewtonRaphson()); abstol = 1e-8)
BenchmarkTools.Trial: 2482 samples with 1 evaluation per sample.
Range (min … max): 1.923 ms … 20.210 ms ┊ GC (min … max): 0.00% … 0.00%
Time (median): 1.966 ms ┊ GC (median): 0.00%
Time (mean ± σ): 2.010 ms ± 702.154 μs ┊ GC (mean ± σ): 0.39% ± 2.99%
▂ ▄▇▇▇▇▇█▅▂▂▁
▂▂▃▃▃▄▅▅██████████████▆▅▅▅▄▄▃▃▃▃▃▂▃▂▃▂▂▂▂▂▂▁▂▂▂▁▁▁▁▂▁▁▁▁▂▁▂ ▄
1.92 ms Histogram: frequency by time 2.09 ms <
Memory estimate: 740.31 KiB, allocs estimate: 225.
@benchmark solve($(nlprob_dense), $(PETScSNES()); abstol = 1e-8)
BenchmarkTools.Trial: 1028 samples with 1 evaluation per sample.
Range (min … max): 4.653 ms … 30.123 ms ┊ GC (min … max): 0.00% … 7.52%
Time (median): 4.802 ms ┊ GC (median): 0.00%
Time (mean ± σ): 4.863 ms ± 816.410 μs ┊ GC (mean ± σ): 0.05% ± 0.23%
▁▄ ▂▄█▅▅▂▂▂ ▁ ▂▂▁
▃██▇▆██████████▄▆█▆▇▇██████▇▅█▇▄▃▃▃▂▂▂▂▂▁▂▂▁▂▂▂▁▁▂▁▂▁▁▂▁▁▂▂ ▄
4.65 ms Histogram: frequency by time 5.29 ms <
Memory estimate: 219.96 KiB, allocs estimate: 280.
Sparse Jacobian
@benchmark solve($(nlprob_sparse), $(NewtonRaphson()); abstol = 1e-8)
BenchmarkTools.Trial: 10000 samples with 1 evaluation per sample.
Range (min … max): 422.797 μs … 16.804 ms ┊ GC (min … max): 0.00% … 18.54%
Time (median): 445.866 μs ┊ GC (median): 0.00%
Time (mean ± σ): 486.071 μs ± 577.293 μs ┊ GC (mean ± σ): 2.80% ± 2.34%
▁▆█▇▄▁ ▂▄▅▂
▁▁▁▂▃▅██████▆▆██████▆▄▃▃▂▂▂▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁ ▃
423 μs Histogram: frequency by time 530 μs <
Memory estimate: 551.46 KiB, allocs estimate: 2137.
@benchmark solve($(nlprob_sparse), $(PETScSNES()); abstol = 1e-8)
BenchmarkTools.Trial: 10000 samples with 1 evaluation per sample.
Range (min … max): 389.816 μs … 56.226 ms ┊ GC (min … max): 0.00% … 14.32%
Time (median): 412.694 μs ┊ GC (median): 0.00%
Time (mean ± σ): 485.034 μs ± 1.871 ms ┊ GC (mean ± σ): 2.12% ± 0.55%
▃▇██▄▂ ▃▄▄▂
▂▂▂▃▄▆███████▆▆▇█████▆▅▄▃▃▃▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▁▂▂▂▂▂▂ ▄
390 μs Histogram: frequency by time 501 μs <
Memory estimate: 180.85 KiB, allocs estimate: 1497.