OrdinaryDiffEqLowOrderRK
Low-order explicit Runge-Kutta methods for non-stiff differential equations. Most of the time, you should use Tsit5
, which is the most common and efficient low-order RK method. The alternative methods provided here are for special circumstances where Tsit5 is not suitable.
Key Properties
Low-order explicit RK methods offer:
- Computational efficiency at higher tolerances (>1e-6)
- Robust error control for difficult non-stiff problems
- Specialized interpolation properties for applications requiring dense output
- Lower-order derivatives requirements for non-smooth functions
- Good performance for specific problem types
When to Use Alternative Low-Order RK Methods
Choose these methods instead of Tsit5 when:
- ODE function
f
is not differentiable to 5th order - use lower-order methods (the more discontinuous, the lower the order needed) - Heavy use of interpolations - OwrenZen methods have superior interpolation convergence
- Delay differential equations - OwrenZen methods are most efficient (see SciMLBenchmarks)
- Very high tolerances (>1e-3) - BS3 is more efficient than Tsit5
- Quadratic polynomial ODEs - SIR54 is optimized for these systems
- Educational purposes - simpler methods for understanding algorithms
Solver Selection Guide
Primary recommendation
For most problems, use Tsit5
instead of these methods.
High tolerances (>1e-3)
BS3
: Third-order Bogacki-Shampine method, most efficient for very high tolerances
Superior interpolation needs
OwrenZen3
: Third-order with excellent interpolation convergenceOwrenZen5
: Fifth-order with excellent interpolation, optimal for DDEsOwrenZen4
: Fourth-order interpolation-optimized method
Non-smooth or discontinuous ODEs
BS3
: Third-order for mildly non-smooth functionsHeun
: Second-order for more discontinuous functions (not generally recommended)Euler
: First-order for highly discontinuous problems
Robust error control alternatives
BS5
: Fifth-order with very robust error estimationDP5
: Fifth-order Dormand-Prince method, classical alternative to Tsit5
Specialized applications
RK4
: Fourth-order with special residual error control, good for DDEs. Note: Uses adaptive timestepping by default - setadaptive=false
insolve()
for traditional fixed-step RK4SIR54
: Fifth-order optimized for ODEs defined by quadratic polynomials (e.g., SIR-type epidemiological models)Stepanov5
: Fifth-order method with enhanced stability properties and optimized error constantsRalston
: Second-order with optimized error constants
Periodic and oscillatory problems
Anas5
: Fifth-order optimized for periodic problems with minimal phase errorFRK65
: Sixth-order zero dissipation method for oscillatory problems
Advanced specialized methods
RKO65
: Sixth-order optimized methodMSRK5
,MSRK6
: Multi-stage methods for specific applicationsPSRK4p7q6
,PSRK3p5q4
,PSRK3p6q5
: Pseudo-symplectic methodsAlshina2
,Alshina3
,Alshina6
: Methods with optimized parameters
Installation
To be able to access the solvers in OrdinaryDiffEqLowOrderRK
, you must first install them use the Julia package manager:
using Pkg
Pkg.add("OrdinaryDiffEqLowOrderRK")
This will only install the solvers listed at the bottom of this page. If you want to explore other solvers for your problem, you will need to install some of the other libraries listed in the navigation bar on the left.
Example usage
using OrdinaryDiffEqLowOrderRK
function lorenz!(du, u, p, t)
du[1] = 10.0 * (u[2] - u[1])
du[2] = u[1] * (28.0 - u[3]) - u[2]
du[3] = u[1] * u[2] - (8 / 3) * u[3]
end
u0 = [1.0; 0.0; 0.0]
tspan = (0.0, 100.0)
prob = ODEProblem(lorenz!, u0, tspan)
sol = solve(prob, BS3())
Full list of solvers
OrdinaryDiffEqLowOrderRK.Euler
— TypeEuler()
Explicit Runge-Kutta Method. The canonical forward Euler method. Fixed timestep only.
Keyword Arguments
References
E. Hairer, S.P. Norsett, G. Wanner, (1993) Solving Ordinary Differential Equations I. Nonstiff Problems. 2nd Edition. Springer Series in Computational Mathematics, Springer-Verlag.
OrdinaryDiffEqLowOrderRK.Heun
— TypeHeun(; stage_limiter! = OrdinaryDiffEq.trivial_limiter!,
step_limiter! = OrdinaryDiffEq.trivial_limiter!,
thread = OrdinaryDiffEq.False())
Explicit Runge-Kutta Method. The second order Heun's method. Uses embedded Euler method for adaptivity.
Keyword Arguments
stage_limiter!
: function of the formlimiter!(u, integrator, p, t)
step_limiter!
: function of the formlimiter!(u, integrator, p, t)
thread
: determines whether internal broadcasting on appropriate CPU arrays should be serial (thread = OrdinaryDiffEq.False()
) or use multiple threads (thread = OrdinaryDiffEq.True()
) when Julia is started with multiple threads.
References
E. Hairer, S.P. Norsett, G. Wanner, (1993) Solving Ordinary Differential Equations I. Nonstiff Problems. 2nd Edition. Springer Series in Computational Mathematics, Springer-Verlag.
OrdinaryDiffEqLowOrderRK.Ralston
— TypeRalston(; stage_limiter! = OrdinaryDiffEq.trivial_limiter!,
step_limiter! = OrdinaryDiffEq.trivial_limiter!,
thread = OrdinaryDiffEq.False())
Explicit Runge-Kutta Method. The optimized second order midpoint method. Uses embedded Euler method for adaptivity.
Keyword Arguments
stage_limiter!
: function of the formlimiter!(u, integrator, p, t)
step_limiter!
: function of the formlimiter!(u, integrator, p, t)
thread
: determines whether internal broadcasting on appropriate CPU arrays should be serial (thread = OrdinaryDiffEq.False()
) or use multiple threads (thread = OrdinaryDiffEq.True()
) when Julia is started with multiple threads.
References
E. Hairer, S.P. Norsett, G. Wanner, (1993) Solving Ordinary Differential Equations I. Nonstiff Problems. 2nd Edition. Springer Series in Computational Mathematics, Springer-Verlag.
OrdinaryDiffEqLowOrderRK.Midpoint
— TypeMidpoint(; stage_limiter! = OrdinaryDiffEq.trivial_limiter!,
step_limiter! = OrdinaryDiffEq.trivial_limiter!,
thread = OrdinaryDiffEq.False())
Explicit Runge-Kutta Method. The second order midpoint method. Uses embedded Euler method for adaptivity.
Keyword Arguments
stage_limiter!
: function of the formlimiter!(u, integrator, p, t)
step_limiter!
: function of the formlimiter!(u, integrator, p, t)
thread
: determines whether internal broadcasting on appropriate CPU arrays should be serial (thread = OrdinaryDiffEq.False()
) or use multiple threads (thread = OrdinaryDiffEq.True()
) when Julia is started with multiple threads.
References
E. Hairer, S.P. Norsett, G. Wanner, (1993) Solving Ordinary Differential Equations I. Nonstiff Problems. 2nd Edition. Springer Series in Computational Mathematics, Springer-Verlag.
OrdinaryDiffEqLowOrderRK.RK4
— TypeRK4(; stage_limiter! = OrdinaryDiffEq.trivial_limiter!,
step_limiter! = OrdinaryDiffEq.trivial_limiter!,
thread = OrdinaryDiffEq.False())
Explicit Runge-Kutta Method. The canonical Runge-Kutta Order 4 method. Uses a defect control for adaptive stepping using maximum error over the whole interval. Classic fourth-order method. Good for medium accuracy calculations.
Keyword Arguments
stage_limiter!
: function of the formlimiter!(u, integrator, p, t)
step_limiter!
: function of the formlimiter!(u, integrator, p, t)
thread
: determines whether internal broadcasting on appropriate CPU arrays should be serial (thread = OrdinaryDiffEq.False()
) or use multiple threads (thread = OrdinaryDiffEq.True()
) when Julia is started with multiple threads.
References
@article{shampine2005solving, title={Solving ODEs and DDEs with residual control}, author={Shampine, LF}, journal={Applied Numerical Mathematics}, volume={52}, number={1}, pages={113–127}, year={2005}, publisher={Elsevier} }
OrdinaryDiffEqLowOrderRK.BS3
— TypeBS3(; stage_limiter! = OrdinaryDiffEq.trivial_limiter!,
step_limiter! = OrdinaryDiffEq.trivial_limiter!,
thread = OrdinaryDiffEq.False())
Explicit Runge-Kutta Method. Bogacki-Shampine 3/2 method. Third-order adaptive method using embedded Euler method for adaptivity. Recommended for non-stiff problems at moderate tolerances.
Keyword Arguments
stage_limiter!
: function of the formlimiter!(u, integrator, p, t)
step_limiter!
: function of the formlimiter!(u, integrator, p, t)
thread
: determines whether internal broadcasting on appropriate CPU arrays should be serial (thread = OrdinaryDiffEq.False()
) or use multiple threads (thread = OrdinaryDiffEq.True()
) when Julia is started with multiple threads.
References
@article{bogacki19893, title={A 3 (2) pair of Runge-Kutta formulas}, author={Bogacki, Przemyslaw and Shampine, Lawrence F}, journal={Applied Mathematics Letters}, volume={2}, number={4}, pages={321–325}, year={1989}, publisher={Elsevier} }
OrdinaryDiffEqLowOrderRK.OwrenZen3
— TypeOwrenZen3(; stage_limiter! = OrdinaryDiffEq.trivial_limiter!,
step_limiter! = OrdinaryDiffEq.trivial_limiter!,
thread = OrdinaryDiffEq.False())
Explicit Runge-Kutta Method. Owren-Zennaro optimized interpolation 3/2 method (free 3rd order interpolant).
Keyword Arguments
stage_limiter!
: function of the formlimiter!(u, integrator, p, t)
step_limiter!
: function of the formlimiter!(u, integrator, p, t)
thread
: determines whether internal broadcasting on appropriate CPU arrays should be serial (thread = OrdinaryDiffEq.False()
) or use multiple threads (thread = OrdinaryDiffEq.True()
) when Julia is started with multiple threads.
References
@article{owren1992derivation, title={Derivation of efficient, continuous, explicit Runge–Kutta methods}, author={Owren, Brynjulf and Zennaro, Marino}, journal={SIAM journal on scientific and statistical computing}, volume={13}, number={6}, pages={1488–1501}, year={1992}, publisher={SIAM} }
OrdinaryDiffEqLowOrderRK.OwrenZen4
— TypeOwrenZen4(; stage_limiter! = OrdinaryDiffEq.trivial_limiter!,
step_limiter! = OrdinaryDiffEq.trivial_limiter!,
thread = OrdinaryDiffEq.False())
Explicit Runge-Kutta Method. Owren-Zennaro optimized interpolation 4/3 method (free 4th order interpolant).
Keyword Arguments
stage_limiter!
: function of the formlimiter!(u, integrator, p, t)
step_limiter!
: function of the formlimiter!(u, integrator, p, t)
thread
: determines whether internal broadcasting on appropriate CPU arrays should be serial (thread = OrdinaryDiffEq.False()
) or use multiple threads (thread = OrdinaryDiffEq.True()
) when Julia is started with multiple threads.
References
@article{owren1992derivation, title={Derivation of efficient, continuous, explicit Runge–Kutta methods}, author={Owren, Brynjulf and Zennaro, Marino}, journal={SIAM journal on scientific and statistical computing}, volume={13}, number={6}, pages={1488–1501}, year={1992}, publisher={SIAM} }
OrdinaryDiffEqLowOrderRK.OwrenZen5
— TypeOwrenZen5(; stage_limiter! = OrdinaryDiffEq.trivial_limiter!,
step_limiter! = OrdinaryDiffEq.trivial_limiter!,
thread = OrdinaryDiffEq.False())
Explicit Runge-Kutta Method. Owren-Zennaro optimized interpolation 5/4 method (free 5th order interpolant).
Keyword Arguments
stage_limiter!
: function of the formlimiter!(u, integrator, p, t)
step_limiter!
: function of the formlimiter!(u, integrator, p, t)
thread
: determines whether internal broadcasting on appropriate CPU arrays should be serial (thread = OrdinaryDiffEq.False()
) or use multiple threads (thread = OrdinaryDiffEq.True()
) when Julia is started with multiple threads.
References
@article{owren1992derivation, title={Derivation of efficient, continuous, explicit Runge–Kutta methods}, author={Owren, Brynjulf and Zennaro, Marino}, journal={SIAM journal on scientific and statistical computing}, volume={13}, number={6}, pages={1488–1501}, year={1992}, publisher={SIAM} }
OrdinaryDiffEqLowOrderRK.BS5
— TypeBS5(; stage_limiter! = OrdinaryDiffEq.trivial_limiter!,
step_limiter! = OrdinaryDiffEq.trivial_limiter!,
thread = OrdinaryDiffEq.False(),
lazy = true)
Explicit Runge-Kutta Method. Bogacki-Shampine 5/4 Runge-Kutta method. (lazy 5th order interpolant).
Keyword Arguments
stage_limiter!
: function of the formlimiter!(u, integrator, p, t)
step_limiter!
: function of the formlimiter!(u, integrator, p, t)
thread
: determines whether internal broadcasting on appropriate CPU arrays should be serial (thread = OrdinaryDiffEq.False()
) or use multiple threads (thread = OrdinaryDiffEq.True()
) when Julia is started with multiple threads.lazy
: determines if the lazy interpolant is used.
References
@article{bogacki1996efficient, title={An efficient runge-kutta (4, 5) pair}, author={Bogacki, P and Shampine, Lawrence F}, journal={Computers \& Mathematics with Applications}, volume={32}, number={6}, pages={15–28}, year={1996}, publisher={Elsevier} }
OrdinaryDiffEqLowOrderRK.DP5
— TypeDP5(; stage_limiter! = OrdinaryDiffEq.trivial_limiter!,
step_limiter! = OrdinaryDiffEq.trivial_limiter!,
thread = OrdinaryDiffEq.False())
Explicit Runge-Kutta Method. Dormand-Prince's 5/4 Runge-Kutta method. (free 4th order interpolant).
Keyword Arguments
stage_limiter!
: function of the formlimiter!(u, integrator, p, t)
step_limiter!
: function of the formlimiter!(u, integrator, p, t)
thread
: determines whether internal broadcasting on appropriate CPU arrays should be serial (thread = OrdinaryDiffEq.False()
) or use multiple threads (thread = OrdinaryDiffEq.True()
) when Julia is started with multiple threads.
References
@article{dormand1980family, title={A family of embedded Runge-Kutta formulae}, author={Dormand, John R and Prince, Peter J}, journal={Journal of computational and applied mathematics}, volume={6}, number={1}, pages={19–26}, year={1980}, publisher={Elsevier} }
OrdinaryDiffEqLowOrderRK.Anas5
— TypeAnas5(; stage_limiter! = OrdinaryDiffEq.trivial_limiter!,
step_limiter! = OrdinaryDiffEq.trivial_limiter!,
thread = OrdinaryDiffEq.False(),
w = 1)
Explicit Runge-Kutta Method. 4th order Runge-Kutta method designed for periodic problems.
Keyword Arguments
stage_limiter!
: function of the formlimiter!(u, integrator, p, t)
step_limiter!
: function of the formlimiter!(u, integrator, p, t)
thread
: determines whether internal broadcasting on appropriate CPU arrays should be serial (thread = OrdinaryDiffEq.False()
) or use multiple threads (thread = OrdinaryDiffEq.True()
) when Julia is started with multiple threads.w
: a periodicity estimate, which when accurate the method becomes 5th order
(and is otherwise 4th order with less error for better estimates).
References
@article{anastassi2005optimized, title={An optimized Runge–Kutta method for the solution of orbital problems}, author={Anastassi, ZA and Simos, TE}, journal={Journal of Computational and Applied Mathematics}, volume={175}, number={1}, pages={1–9}, year={2005}, publisher={Elsevier}}
OrdinaryDiffEqLowOrderRK.RKO65
— TypeRKO65(; stage_limiter! = OrdinaryDiffEq.trivial_limiter!,
step_limiter! = OrdinaryDiffEq.trivial_limiter!,
thread = OrdinaryDiffEq.False())
Explicit Runge-Kutta Method. Tsitouras' Runge-Kutta-Oliver 6 stage 5th order method.
Keyword Arguments
stage_limiter!
: function of the formlimiter!(u, integrator, p, t)
step_limiter!
: function of the formlimiter!(u, integrator, p, t)
thread
: determines whether internal broadcasting on appropriate CPU arrays should be serial (thread = OrdinaryDiffEq.False()
) or use multiple threads (thread = OrdinaryDiffEq.True()
) when Julia is started with multiple threads.
References
Tsitouras, Ch. "Explicit Runge–Kutta methods for starting integration of Lane–Emden problem." Applied Mathematics and Computation 354 (2019): 353-364. doi: https://doi.org/10.1016/j.amc.2019.02.047
OrdinaryDiffEqLowOrderRK.FRK65
— TypeFRK65(; stage_limiter! = OrdinaryDiffEq.trivial_limiter!,
step_limiter! = OrdinaryDiffEq.trivial_limiter!,
thread = OrdinaryDiffEq.False(),
omega = 0.0)
Explicit Runge-Kutta Method. Zero Dissipation Runge-Kutta of 6th order.
Keyword Arguments
stage_limiter!
: function of the formlimiter!(u, integrator, p, t)
step_limiter!
: function of the formlimiter!(u, integrator, p, t)
thread
: determines whether internal broadcasting on appropriate CPU arrays should be serial (thread = OrdinaryDiffEq.False()
) or use multiple threads (thread = OrdinaryDiffEq.True()
) when Julia is started with multiple threads.omega
: a periodicity phase estimate,
when accurate this method results in zero numerical dissipation.
References
@article{medvedev2018fitted, title={Fitted modifications of Runge-Kutta pairs of orders 6 (5)}, author={Medvedev, Maxim A and Simos, TE and Tsitouras, Ch}, journal={Mathematical Methods in the Applied Sciences}, volume={41}, number={16}, pages={6184–6194}, year={2018}, publisher={Wiley Online Library}}
OrdinaryDiffEqLowOrderRK.RKM
— TypeRKM(; stage_limiter! = OrdinaryDiffEq.trivial_limiter!,
step_limiter! = OrdinaryDiffEq.trivial_limiter!,
thread = OrdinaryDiffEq.False())
Explicit Runge-Kutta Method. Method designed to have good stability properties when applied to pseudospectral discretizations of hyperbolic partial differential equaitons.
Keyword Arguments
stage_limiter!
: function of the formlimiter!(u, integrator, p, t)
step_limiter!
: function of the formlimiter!(u, integrator, p, t)
thread
: determines whether internal broadcasting on appropriate CPU arrays should be serial (thread = OrdinaryDiffEq.False()
) or use multiple threads (thread = OrdinaryDiffEq.True()
) when Julia is started with multiple threads.
References
@article{mead1999optimal, title={Optimal Runge–Kutta methods for first order pseudospectral operators}, author={Mead, JL and Renaut, RA}, journal={Journal of Computational Physics}, volume={152}, number={1}, pages={404–419}, year={1999}, publisher={Elsevier} }
OrdinaryDiffEqLowOrderRK.MSRK5
— TypeMSRK5(; stage_limiter! = OrdinaryDiffEq.trivial_limiter!,
step_limiter! = OrdinaryDiffEq.trivial_limiter!,
thread = OrdinaryDiffEq.False())
Explicit Runge-Kutta Method. 5th order method.
Keyword Arguments
stage_limiter!
: function of the formlimiter!(u, integrator, p, t)
step_limiter!
: function of the formlimiter!(u, integrator, p, t)
thread
: determines whether internal broadcasting on appropriate CPU arrays should be serial (thread = OrdinaryDiffEq.False()
) or use multiple threads (thread = OrdinaryDiffEq.True()
) when Julia is started with multiple threads.
References
Misha Stepanov - https://arxiv.org/pdf/2202.08443.pdf : Figure 3.
OrdinaryDiffEqLowOrderRK.MSRK6
— TypeMSRK6(; stage_limiter! = OrdinaryDiffEq.trivial_limiter!,
step_limiter! = OrdinaryDiffEq.trivial_limiter!,
thread = OrdinaryDiffEq.False())
Explicit Runge-Kutta Method. 6th order method.
Keyword Arguments
stage_limiter!
: function of the formlimiter!(u, integrator, p, t)
step_limiter!
: function of the formlimiter!(u, integrator, p, t)
thread
: determines whether internal broadcasting on appropriate CPU arrays should be serial (thread = OrdinaryDiffEq.False()
) or use multiple threads (thread = OrdinaryDiffEq.True()
) when Julia is started with multiple threads.
References
Misha Stepanov - https://arxiv.org/pdf/2202.08443.pdf : Table4
OrdinaryDiffEqLowOrderRK.PSRK4p7q6
— TypePSRK4p7q6(; stage_limiter! = OrdinaryDiffEq.trivial_limiter!,
step_limiter! = OrdinaryDiffEq.trivial_limiter!,
thread = OrdinaryDiffEq.False())
Explicit Runge-Kutta Method. 6-stage Pseudo-Symplectic method.
Keyword Arguments
stage_limiter!
: function of the formlimiter!(u, integrator, p, t)
step_limiter!
: function of the formlimiter!(u, integrator, p, t)
thread
: determines whether internal broadcasting on appropriate CPU arrays should be serial (thread = OrdinaryDiffEq.False()
) or use multiple threads (thread = OrdinaryDiffEq.True()
) when Julia is started with multiple threads.
References
@article{Aubry1998, author = {A. Aubry and P. Chartier}, journal = {BIT Numer. Math.}, title = {Pseudo-symplectic {R}unge-{K}utta methods}, volume = {38}, PAGES = {439-461}, year = {1998}, }, @article{Capuano2017, title = {Explicit {R}unge–{K}utta schemes for incompressible flow with improved energy-conservation properties}, journal = {J. Comput. Phys.}, volume = {328}, pages = {86-94}, year = {2017}, issn = {0021-9991}, doi = {https://doi.org/10.1016/j.jcp.2016.10.040}, author = {F. Capuano and G. Coppola and L. Rández and L. {de Luca}},}
OrdinaryDiffEqLowOrderRK.PSRK3p5q4
— TypePSRK3p5q4(; stage_limiter! = OrdinaryDiffEq.trivial_limiter!,
step_limiter! = OrdinaryDiffEq.trivial_limiter!,
thread = OrdinaryDiffEq.False())
Explicit Runge-Kutta Method. 4-stage Pseudo-Symplectic method.
Keyword Arguments
stage_limiter!
: function of the formlimiter!(u, integrator, p, t)
step_limiter!
: function of the formlimiter!(u, integrator, p, t)
thread
: determines whether internal broadcasting on appropriate CPU arrays should be serial (thread = OrdinaryDiffEq.False()
) or use multiple threads (thread = OrdinaryDiffEq.True()
) when Julia is started with multiple threads.
References
@article{Aubry1998, author = {A. Aubry and P. Chartier}, journal = {BIT Numer. Math.}, title = {Pseudo-symplectic {R}unge-{K}utta methods}, year = {1998}, }, @article{Capuano2017, title = {Explicit {R}unge–{K}utta schemes for incompressible flow with improved energy-conservation properties}, journal = {J. Comput. Phys.}, year = {2017}, author = {F. Capuano and G. Coppola and L. Rández and L. {de Luca}},}
OrdinaryDiffEqLowOrderRK.PSRK3p6q5
— TypePSRK3p6q5(; stage_limiter! = OrdinaryDiffEq.trivial_limiter!,
step_limiter! = OrdinaryDiffEq.trivial_limiter!,
thread = OrdinaryDiffEq.False())
Explicit Runge-Kutta Method. 5-stage Pseudo-Symplectic method.
Keyword Arguments
stage_limiter!
: function of the formlimiter!(u, integrator, p, t)
step_limiter!
: function of the formlimiter!(u, integrator, p, t)
thread
: determines whether internal broadcasting on appropriate CPU arrays should be serial (thread = OrdinaryDiffEq.False()
) or use multiple threads (thread = OrdinaryDiffEq.True()
) when Julia is started with multiple threads.
References
@article{Aubry1998, author = {A. Aubry and P. Chartier}, journal = {BIT Numer. Math.}, title = {Pseudo-symplectic {R}unge-{K}utta methods}, year = {1998}, }, @article{Capuano2017, title = {Explicit {R}unge–{K}utta schemes for incompressible flow with improved energy-conservation properties}, journal = {J. Comput. Phys.}, year = {2017}, author = {F. Capuano and G. Coppola and L. Rández and L. {de Luca}},}
OrdinaryDiffEqLowOrderRK.Stepanov5
— TypeStepanov5(; stage_limiter! = OrdinaryDiffEq.trivial_limiter!,
step_limiter! = OrdinaryDiffEq.trivial_limiter!,
thread = OrdinaryDiffEq.False())
Explicit Runge-Kutta Method. 5th order method.
Keyword Arguments
stage_limiter!
: function of the formlimiter!(u, integrator, p, t)
step_limiter!
: function of the formlimiter!(u, integrator, p, t)
thread
: determines whether internal broadcasting on appropriate CPU arrays should be serial (thread = OrdinaryDiffEq.False()
) or use multiple threads (thread = OrdinaryDiffEq.True()
) when Julia is started with multiple threads.
References
@article{Stepanov2021Embedded5, title={Embedded (4, 5) pairs of explicit 7-stage Runge–Kutta methods with FSAL property}, author={Misha Stepanov}, journal={Calcolo}, year={2021}, volume={59} }
OrdinaryDiffEqLowOrderRK.SIR54
— TypeSIR54(; stage_limiter! = OrdinaryDiffEq.trivial_limiter!,
step_limiter! = OrdinaryDiffEq.trivial_limiter!,
thread = OrdinaryDiffEq.False())
Explicit Runge-Kutta Method. 5th order method suited for SIR-type epidemic models.
Keyword Arguments
stage_limiter!
: function of the formlimiter!(u, integrator, p, t)
step_limiter!
: function of the formlimiter!(u, integrator, p, t)
thread
: determines whether internal broadcasting on appropriate CPU arrays should be serial (thread = OrdinaryDiffEq.False()
) or use multiple threads (thread = OrdinaryDiffEq.True()
) when Julia is started with multiple threads.
References
@article{Kovalnogov2020RungeKuttaPS, title={Runge–Kutta pairs suited for SIR‐type epidemic models}, author={Vladislav N. Kovalnogov and Theodore E. Simos and Ch. Tsitouras}, journal={Mathematical Methods in the Applied Sciences}, year={2020}, volume={44}, pages={5210 - 5216} }
OrdinaryDiffEqLowOrderRK.Alshina2
— TypeAlshina2(; stage_limiter! = OrdinaryDiffEq.trivial_limiter!,
step_limiter! = OrdinaryDiffEq.trivial_limiter!,
thread = OrdinaryDiffEq.False())
Explicit Runge-Kutta Method. 2nd order, 2-stage Method with optimal parameters.
Keyword Arguments
stage_limiter!
: function of the formlimiter!(u, integrator, p, t)
step_limiter!
: function of the formlimiter!(u, integrator, p, t)
thread
: determines whether internal broadcasting on appropriate CPU arrays should be serial (thread = OrdinaryDiffEq.False()
) or use multiple threads (thread = OrdinaryDiffEq.True()
) when Julia is started with multiple threads.
References
@article{Alshina2008, doi = {10.1134/s0965542508030068}, url = {https://doi.org/10.1134/s0965542508030068}, year = {2008}, month = mar, publisher = {Pleiades Publishing Ltd}, volume = {48}, number = {3}, pages = {395–405}, author = {E. A. Alshina and E. M. Zaks and N. N. Kalitkin}, title = {Optimal first- to sixth-order accurate Runge-Kutta schemes}, journal = {Computational Mathematics and Mathematical Physics} }
OrdinaryDiffEqLowOrderRK.Alshina3
— TypeAlshina3(; stage_limiter! = OrdinaryDiffEq.trivial_limiter!,
step_limiter! = OrdinaryDiffEq.trivial_limiter!,
thread = OrdinaryDiffEq.False())
Explicit Runge-Kutta Method. 3rd order, 3-stage Method with optimal parameters.
Keyword Arguments
stage_limiter!
: function of the formlimiter!(u, integrator, p, t)
step_limiter!
: function of the formlimiter!(u, integrator, p, t)
thread
: determines whether internal broadcasting on appropriate CPU arrays should be serial (thread = OrdinaryDiffEq.False()
) or use multiple threads (thread = OrdinaryDiffEq.True()
) when Julia is started with multiple threads.
References
@article{Alshina2008, doi = {10.1134/s0965542508030068}, url = {https://doi.org/10.1134/s0965542508030068}, year = {2008}, month = mar, publisher = {Pleiades Publishing Ltd}, volume = {48}, number = {3}, pages = {395–405}, author = {E. A. Alshina and E. M. Zaks and N. N. Kalitkin}, title = {Optimal first- to sixth-order accurate Runge-Kutta schemes}, journal = {Computational Mathematics and Mathematical Physics} }
OrdinaryDiffEqLowOrderRK.Alshina6
— TypeAlshina6(; stage_limiter! = OrdinaryDiffEq.trivial_limiter!,
step_limiter! = OrdinaryDiffEq.trivial_limiter!,
thread = OrdinaryDiffEq.False())
Explicit Runge-Kutta Method. 6th order, 7-stage Method with optimal parameters.
Keyword Arguments
stage_limiter!
: function of the formlimiter!(u, integrator, p, t)
step_limiter!
: function of the formlimiter!(u, integrator, p, t)
thread
: determines whether internal broadcasting on appropriate CPU arrays should be serial (thread = OrdinaryDiffEq.False()
) or use multiple threads (thread = OrdinaryDiffEq.True()
) when Julia is started with multiple threads.
References
@article{Alshina2008, doi = {10.1134/s0965542508030068}, url = {https://doi.org/10.1134/s0965542508030068}, year = {2008}, month = mar, publisher = {Pleiades Publishing Ltd}, volume = {48}, number = {3}, pages = {395–405}, author = {E. A. Alshina and E. M. Zaks and N. N. Kalitkin}, title = {Optimal first- to sixth-order accurate Runge-Kutta schemes}, journal = {Computational Mathematics and Mathematical Physics} }