OrdinaryDiffEqSDIRK

Singly Diagonally Implicit Runge-Kutta (SDIRK) methods are a family of implicit Runge-Kutta methods designed for solving stiff ordinary differential equations. These methods are particularly effective for problems where explicit methods become unstable due to stiffness.

Key Properties

SDIRK methods have several important characteristics:

  • A-stable and L-stable: Can handle highly stiff problems without numerical instability
  • Stiffly accurate: Many SDIRK methods provide additional numerical stability for stiff problems
  • Diagonally implicit structure: The implicit system only requires solving a sequence of nonlinear equations rather than a large coupled system
  • Good for moderate to large systems: More efficient than fully implicit RK methods for many problems

When to Use SDIRK Methods

SDIRK methods are recommended for:

  • Stiff differential equations where explicit methods fail or require very small timesteps
  • Problems requiring good stability properties at moderate to high tolerances
  • Systems where Rosenbrock methods (which require Jacobians) are not suitable or available
  • IMEX problems using the KenCarp family, which can split stiff and non-stiff terms

Solver Selection Guide

High tolerance (>1e-2)

  • TRBDF2: Second-order A-B-L-S-stable method, good for oscillatory problems

Medium tolerance (1e-8 to 1e-2)

  • KenCarp4: Fourth-order method with excellent stability, good all-around choice
  • KenCarp47: Seventh-stage fourth-order method, enhanced stability
  • Kvaerno4 or Kvaerno5: High-order stiffly accurate methods

Low tolerance (<1e-8)

  • Kvaerno5: Fifth-order stiffly accurate method for high accuracy
  • KenCarp5: Fifth-order method with splitting capabilities

Special Cases

  • ImplicitEuler: First-order method, only recommended for problems with discontinuities or when f is not differentiable
  • Trapezoid: Second-order symmetric method, reversible but not symplectic. Good for eliminating damping often seen with L-stable methods
  • ImplicitMidpoint: Second-order A-stable symplectic method for energy-preserving systems
  • SSPSDIRK2: Strong stability preserving variant for problems requiring monotonicity preservation

Installation

To be able to access the solvers in OrdinaryDiffEqSDIRK, you must first install them use the Julia package manager:

using Pkg
Pkg.add("OrdinaryDiffEqSDIRK")

This will only install the solvers listed at the bottom of this page. If you want to explore other solvers for your problem, you will need to install some of the other libraries listed in the navigation bar on the left.

Example usage

using OrdinaryDiffEqSDIRK

function lorenz!(du, u, p, t)
    du[1] = 10.0 * (u[2] - u[1])
    du[2] = u[1] * (28.0 - u[3]) - u[2]
    du[3] = u[1] * u[2] - (8 / 3) * u[3]
end
u0 = [1.0; 0.0; 0.0]
tspan = (0.0, 100.0)
prob = ODEProblem(lorenz!, u0, tspan)
sol = solve(prob, KenCarp4())

Full list of solvers

OrdinaryDiffEqSDIRK.ImplicitEulerType
ImplicitEuler(; chunk_size = Val{0}(),
                autodiff = AutoForwardDiff(),
                standardtag = Val{true}(),
                concrete_jac = nothing,
                diff_type = Val{:forward}(),
                linsolve = nothing,
                precs = DEFAULT_PRECS,
                nlsolve = NLNewton(),
                extrapolant = :constant,
                controller = :PI,
                step_limiter! = trivial_limiter!)

SDIRK Method. A 1st order implicit solver. A-B-L-stable. Adaptive timestepping through a divided differences estimate. Strong-stability preserving (SSP). Good for highly stiff equations.

Keyword Arguments

  • autodiff: Uses ADTypes.jl to specify whether to use automatic differentiation via ForwardDiff.jl or finite differencing via FiniteDiff.jl. Defaults to AutoForwardDiff() for automatic differentiation, which by default uses chunksize = 0, and thus uses the internal ForwardDiff.jl algorithm for the choice. To use FiniteDiff.jl, the AutoFiniteDiff() ADType can be used, which has a keyword argument fdtype with default value Val{:forward}(), and alternatives Val{:central}() and Val{:complex}().
  • standardtag: Specifies whether to use package-specific tags instead of the ForwardDiff default function-specific tags. For more information, see this blog post. Defaults to Val{true}().
  • concrete_jac: Specifies whether a Jacobian should be constructed. Defaults to nothing, which means it will be chosen true/false depending on circumstances of the solver, such as whether a Krylov subspace method is used for linsolve.
  • linsolve: Any LinearSolve.jl compatible linear solver. For example, to use KLU.jl, specify ImplicitEuler(linsolve = KLUFactorization()). When nothing is passed, uses DefaultLinearSolver.
  • precs: Any LinearSolve.jl-compatible preconditioner can be used as a left or right preconditioner. Preconditioners are specified by the Pl,Pr = precs(W,du,u,p,t,newW,Plprev,Prprev,solverdata) function where the arguments are defined as:
    • W: the current Jacobian of the nonlinear system. Specified as either $I - \gamma J$ or $I/\gamma - J$ depending on the algorithm. This will commonly be a WOperator type defined by OrdinaryDiffEq.jl. It is a lazy representation of the operator. Users can construct the W-matrix on demand by calling convert(AbstractMatrix,W) to receive an AbstractMatrix matching the jac_prototype.
    • du: the current ODE derivative
    • u: the current ODE state
    • p: the ODE parameters
    • t: the current ODE time
    • newW: a Bool which specifies whether the W matrix has been updated since the last call to precs. It is recommended that this is checked to only update the preconditioner when newW == true.
    • Plprev: the previous Pl.
    • Prprev: the previous Pr.
    • solverdata: Optional extra data the solvers can give to the precs function. Solver-dependent and subject to change.
    The return is a tuple (Pl,Pr) of the LinearSolve.jl-compatible preconditioners. To specify one-sided preconditioning, simply return nothing for the preconditioner which is not used. Additionally, precs must supply the dispatch:
    Pl, Pr = precs(W, du, u, p, t, ::Nothing, ::Nothing, ::Nothing, solverdata)
    which is used in the solver setup phase to construct the integrator type with the preconditioners (Pl,Pr). The default is precs=DEFAULT_PRECS where the default preconditioner function is defined as:
    DEFAULT_PRECS(W, du, u, p, t, newW, Plprev, Prprev, solverdata) = nothing, nothing
  • nlsolve: TBD
    • extrapolant: TBD
  • controller: TBD
  • step_limiter!: function of the form limiter!(u, integrator, p, t)

References

@book{wanner1996solving, title={Solving ordinary differential equations II}, author={Wanner, Gerhard and Hairer, Ernst}, volume={375}, year={1996}, publisher={Springer Berlin Heidelberg New York}}

source
OrdinaryDiffEqSDIRK.ImplicitMidpointType
ImplicitMidpoint(; chunk_size = Val{0}(),
                   autodiff = AutoForwardDiff(),
                   standardtag = Val{true}(),
                   concrete_jac = nothing,
                   diff_type = Val{:forward}(),
                   linsolve = nothing,
                   precs = DEFAULT_PRECS,
                   nlsolve = NLNewton(),
                   extrapolant = :linear,
                   step_limiter! = trivial_limiter!)

SDIRK Method. A second order A-stable symplectic and symmetric implicit solver. Excellent for Hamiltonian systems and highly stiff equations.

Keyword Arguments

  • autodiff: Uses ADTypes.jl to specify whether to use automatic differentiation via ForwardDiff.jl or finite differencing via FiniteDiff.jl. Defaults to AutoForwardDiff() for automatic differentiation, which by default uses chunksize = 0, and thus uses the internal ForwardDiff.jl algorithm for the choice. To use FiniteDiff.jl, the AutoFiniteDiff() ADType can be used, which has a keyword argument fdtype with default value Val{:forward}(), and alternatives Val{:central}() and Val{:complex}().
  • standardtag: Specifies whether to use package-specific tags instead of the ForwardDiff default function-specific tags. For more information, see this blog post. Defaults to Val{true}().
  • concrete_jac: Specifies whether a Jacobian should be constructed. Defaults to nothing, which means it will be chosen true/false depending on circumstances of the solver, such as whether a Krylov subspace method is used for linsolve.
  • linsolve: Any LinearSolve.jl compatible linear solver. For example, to use KLU.jl, specify ImplicitMidpoint(linsolve = KLUFactorization()). When nothing is passed, uses DefaultLinearSolver.
  • precs: Any LinearSolve.jl-compatible preconditioner can be used as a left or right preconditioner. Preconditioners are specified by the Pl,Pr = precs(W,du,u,p,t,newW,Plprev,Prprev,solverdata) function where the arguments are defined as:
    • W: the current Jacobian of the nonlinear system. Specified as either $I - \gamma J$ or $I/\gamma - J$ depending on the algorithm. This will commonly be a WOperator type defined by OrdinaryDiffEq.jl. It is a lazy representation of the operator. Users can construct the W-matrix on demand by calling convert(AbstractMatrix,W) to receive an AbstractMatrix matching the jac_prototype.
    • du: the current ODE derivative
    • u: the current ODE state
    • p: the ODE parameters
    • t: the current ODE time
    • newW: a Bool which specifies whether the W matrix has been updated since the last call to precs. It is recommended that this is checked to only update the preconditioner when newW == true.
    • Plprev: the previous Pl.
    • Prprev: the previous Pr.
    • solverdata: Optional extra data the solvers can give to the precs function. Solver-dependent and subject to change.
    The return is a tuple (Pl,Pr) of the LinearSolve.jl-compatible preconditioners. To specify one-sided preconditioning, simply return nothing for the preconditioner which is not used. Additionally, precs must supply the dispatch:
    Pl, Pr = precs(W, du, u, p, t, ::Nothing, ::Nothing, ::Nothing, solverdata)
    which is used in the solver setup phase to construct the integrator type with the preconditioners (Pl,Pr). The default is precs=DEFAULT_PRECS where the default preconditioner function is defined as:
    DEFAULT_PRECS(W, du, u, p, t, newW, Plprev, Prprev, solverdata) = nothing, nothing
  • nlsolve: TBD
    • extrapolant: TBD
  • step_limiter!: function of the form limiter!(u, integrator, p, t)

References

@book{wanner1996solving, title={Solving ordinary differential equations II}, author={Wanner, Gerhard and Hairer, Ernst}, volume={375}, year={1996}, publisher={Springer Berlin Heidelberg New York}}

source
OrdinaryDiffEqSDIRK.TrapezoidType
Trapezoid(; chunk_size = Val{0}(),
            autodiff = AutoForwardDiff(),
            standardtag = Val{true}(),
            concrete_jac = nothing,
            diff_type = Val{:forward}(),
            linsolve = nothing,
            precs = DEFAULT_PRECS,
            nlsolve = NLNewton(),
            extrapolant = :linear,
            controller = :PI,
            step_limiter! = trivial_limiter!)

SDIRK Method. A second order A-stable symmetric ESDIRK method. 'Almost symplectic' without numerical dampening.

Keyword Arguments

  • autodiff: Uses ADTypes.jl to specify whether to use automatic differentiation via ForwardDiff.jl or finite differencing via FiniteDiff.jl. Defaults to AutoForwardDiff() for automatic differentiation, which by default uses chunksize = 0, and thus uses the internal ForwardDiff.jl algorithm for the choice. To use FiniteDiff.jl, the AutoFiniteDiff() ADType can be used, which has a keyword argument fdtype with default value Val{:forward}(), and alternatives Val{:central}() and Val{:complex}().
  • standardtag: Specifies whether to use package-specific tags instead of the ForwardDiff default function-specific tags. For more information, see this blog post. Defaults to Val{true}().
  • concrete_jac: Specifies whether a Jacobian should be constructed. Defaults to nothing, which means it will be chosen true/false depending on circumstances of the solver, such as whether a Krylov subspace method is used for linsolve.
  • linsolve: Any LinearSolve.jl compatible linear solver. For example, to use KLU.jl, specify Trapezoid(linsolve = KLUFactorization()). When nothing is passed, uses DefaultLinearSolver.
  • precs: Any LinearSolve.jl-compatible preconditioner can be used as a left or right preconditioner. Preconditioners are specified by the Pl,Pr = precs(W,du,u,p,t,newW,Plprev,Prprev,solverdata) function where the arguments are defined as:
    • W: the current Jacobian of the nonlinear system. Specified as either $I - \gamma J$ or $I/\gamma - J$ depending on the algorithm. This will commonly be a WOperator type defined by OrdinaryDiffEq.jl. It is a lazy representation of the operator. Users can construct the W-matrix on demand by calling convert(AbstractMatrix,W) to receive an AbstractMatrix matching the jac_prototype.
    • du: the current ODE derivative
    • u: the current ODE state
    • p: the ODE parameters
    • t: the current ODE time
    • newW: a Bool which specifies whether the W matrix has been updated since the last call to precs. It is recommended that this is checked to only update the preconditioner when newW == true.
    • Plprev: the previous Pl.
    • Prprev: the previous Pr.
    • solverdata: Optional extra data the solvers can give to the precs function. Solver-dependent and subject to change.
    The return is a tuple (Pl,Pr) of the LinearSolve.jl-compatible preconditioners. To specify one-sided preconditioning, simply return nothing for the preconditioner which is not used. Additionally, precs must supply the dispatch:
    Pl, Pr = precs(W, du, u, p, t, ::Nothing, ::Nothing, ::Nothing, solverdata)
    which is used in the solver setup phase to construct the integrator type with the preconditioners (Pl,Pr). The default is precs=DEFAULT_PRECS where the default preconditioner function is defined as:
    DEFAULT_PRECS(W, du, u, p, t, newW, Plprev, Prprev, solverdata) = nothing, nothing
  • nlsolve: TBD
    • extrapolant: TBD
  • controller: TBD
  • step_limiter!: function of the form limiter!(u, integrator, p, t)

References

Andre Vladimirescu. 1994. The Spice Book. John Wiley & Sons, Inc., New York, NY, USA.

source
OrdinaryDiffEqSDIRK.TRBDF2Type
TRBDF2(; chunk_size = Val{0}(),
         autodiff = AutoForwardDiff(),
         standardtag = Val{true}(),
         concrete_jac = nothing,
         diff_type = Val{:forward}(),
         linsolve = nothing,
         precs = DEFAULT_PRECS,
         nlsolve = NLNewton(),
         smooth_est = true,
         extrapolant = :linear,
         controller = :PI,
         step_limiter! = trivial_limiter!)

SDIRK Method. A second order A-B-L-S-stable one-step ESDIRK method. Includes stiffness-robust error estimates for accurate adaptive timestepping, smoothed derivatives for highly stiff and oscillatory problems. Good for high tolerances (>1e-2) on stiff problems.

Keyword Arguments

  • autodiff: Uses ADTypes.jl to specify whether to use automatic differentiation via ForwardDiff.jl or finite differencing via FiniteDiff.jl. Defaults to AutoForwardDiff() for automatic differentiation, which by default uses chunksize = 0, and thus uses the internal ForwardDiff.jl algorithm for the choice. To use FiniteDiff.jl, the AutoFiniteDiff() ADType can be used, which has a keyword argument fdtype with default value Val{:forward}(), and alternatives Val{:central}() and Val{:complex}().
  • standardtag: Specifies whether to use package-specific tags instead of the ForwardDiff default function-specific tags. For more information, see this blog post. Defaults to Val{true}().
  • concrete_jac: Specifies whether a Jacobian should be constructed. Defaults to nothing, which means it will be chosen true/false depending on circumstances of the solver, such as whether a Krylov subspace method is used for linsolve.
  • linsolve: Any LinearSolve.jl compatible linear solver. For example, to use KLU.jl, specify TRBDF2(linsolve = KLUFactorization()). When nothing is passed, uses DefaultLinearSolver.
  • precs: Any LinearSolve.jl-compatible preconditioner can be used as a left or right preconditioner. Preconditioners are specified by the Pl,Pr = precs(W,du,u,p,t,newW,Plprev,Prprev,solverdata) function where the arguments are defined as:
    • W: the current Jacobian of the nonlinear system. Specified as either $I - \gamma J$ or $I/\gamma - J$ depending on the algorithm. This will commonly be a WOperator type defined by OrdinaryDiffEq.jl. It is a lazy representation of the operator. Users can construct the W-matrix on demand by calling convert(AbstractMatrix,W) to receive an AbstractMatrix matching the jac_prototype.
    • du: the current ODE derivative
    • u: the current ODE state
    • p: the ODE parameters
    • t: the current ODE time
    • newW: a Bool which specifies whether the W matrix has been updated since the last call to precs. It is recommended that this is checked to only update the preconditioner when newW == true.
    • Plprev: the previous Pl.
    • Prprev: the previous Pr.
    • solverdata: Optional extra data the solvers can give to the precs function. Solver-dependent and subject to change.
    The return is a tuple (Pl,Pr) of the LinearSolve.jl-compatible preconditioners. To specify one-sided preconditioning, simply return nothing for the preconditioner which is not used. Additionally, precs must supply the dispatch:
    Pl, Pr = precs(W, du, u, p, t, ::Nothing, ::Nothing, ::Nothing, solverdata)
    which is used in the solver setup phase to construct the integrator type with the preconditioners (Pl,Pr). The default is precs=DEFAULT_PRECS where the default preconditioner function is defined as:
    DEFAULT_PRECS(W, du, u, p, t, newW, Plprev, Prprev, solverdata) = nothing, nothing
  • nlsolve: TBD
    • smooth_est: TBD
  • extrapolant: TBD
  • controller: TBD
  • step_limiter!: function of the form limiter!(u, integrator, p, t)

References

@article{hosea1996analysis, title={Analysis and implementation of TR-BDF2}, author={Hosea, ME and Shampine, LF}, journal={Applied Numerical Mathematics}, volume={20}, number={1-2}, pages={21–37}, year={1996}, publisher={Elsevier}

source
OrdinaryDiffEqSDIRK.SDIRK2Type
SDIRK2(; chunk_size = Val{0}(),
         autodiff = AutoForwardDiff(),
         standardtag = Val{true}(),
         concrete_jac = nothing,
         diff_type = Val{:forward}(),
         linsolve = nothing,
         precs = DEFAULT_PRECS,
         nlsolve = NLNewton(),
         smooth_est = true,
         extrapolant = :linear,
         controller = :PI,
         step_limiter! = trivial_limiter!)

SDIRK Method. SDIRK2: SDIRK Method An A-B-L stable 2nd order SDIRK method

Keyword Arguments

  • autodiff: Uses ADTypes.jl to specify whether to use automatic differentiation via ForwardDiff.jl or finite differencing via FiniteDiff.jl. Defaults to AutoForwardDiff() for automatic differentiation, which by default uses chunksize = 0, and thus uses the internal ForwardDiff.jl algorithm for the choice. To use FiniteDiff.jl, the AutoFiniteDiff() ADType can be used, which has a keyword argument fdtype with default value Val{:forward}(), and alternatives Val{:central}() and Val{:complex}().
  • standardtag: Specifies whether to use package-specific tags instead of the ForwardDiff default function-specific tags. For more information, see this blog post. Defaults to Val{true}().
  • concrete_jac: Specifies whether a Jacobian should be constructed. Defaults to nothing, which means it will be chosen true/false depending on circumstances of the solver, such as whether a Krylov subspace method is used for linsolve.
  • linsolve: Any LinearSolve.jl compatible linear solver. For example, to use KLU.jl, specify SDIRK2(linsolve = KLUFactorization()). When nothing is passed, uses DefaultLinearSolver.
  • precs: Any LinearSolve.jl-compatible preconditioner can be used as a left or right preconditioner. Preconditioners are specified by the Pl,Pr = precs(W,du,u,p,t,newW,Plprev,Prprev,solverdata) function where the arguments are defined as:
    • W: the current Jacobian of the nonlinear system. Specified as either $I - \gamma J$ or $I/\gamma - J$ depending on the algorithm. This will commonly be a WOperator type defined by OrdinaryDiffEq.jl. It is a lazy representation of the operator. Users can construct the W-matrix on demand by calling convert(AbstractMatrix,W) to receive an AbstractMatrix matching the jac_prototype.
    • du: the current ODE derivative
    • u: the current ODE state
    • p: the ODE parameters
    • t: the current ODE time
    • newW: a Bool which specifies whether the W matrix has been updated since the last call to precs. It is recommended that this is checked to only update the preconditioner when newW == true.
    • Plprev: the previous Pl.
    • Prprev: the previous Pr.
    • solverdata: Optional extra data the solvers can give to the precs function. Solver-dependent and subject to change.
    The return is a tuple (Pl,Pr) of the LinearSolve.jl-compatible preconditioners. To specify one-sided preconditioning, simply return nothing for the preconditioner which is not used. Additionally, precs must supply the dispatch:
    Pl, Pr = precs(W, du, u, p, t, ::Nothing, ::Nothing, ::Nothing, solverdata)
    which is used in the solver setup phase to construct the integrator type with the preconditioners (Pl,Pr). The default is precs=DEFAULT_PRECS where the default preconditioner function is defined as:
    DEFAULT_PRECS(W, du, u, p, t, newW, Plprev, Prprev, solverdata) = nothing, nothing
  • nlsolve: TBD
    • smooth_est: TBD
  • extrapolant: TBD
  • controller: TBD
  • step_limiter!: function of the form limiter!(u, integrator, p, t)

References

@article{hindmarsh2005sundials, title={{SUNDIALS}: Suite of nonlinear and differential/algebraic equation solvers}, author={Hindmarsh, Alan C and Brown, Peter N and Grant, Keith E and Lee, Steven L and Serban, Radu and Shumaker, Dan E and Woodward, Carol S}, journal={ACM Transactions on Mathematical Software (TOMS)}, volume={31}, number={3}, pages={363–396}, year={2005}, publisher={ACM}}

source
OrdinaryDiffEqSDIRK.SDIRK22Type
SDIRK22(; chunk_size = Val{0}(),
          autodiff = AutoForwardDiff(),
          standardtag = Val{true}(),
          concrete_jac = nothing,
          diff_type = Val{:forward}(),
          linsolve = nothing,
          precs = DEFAULT_PRECS,
          nlsolve = NLNewton(),
          smooth_est = true,
          extrapolant = :linear,
          controller = :PI,
          step_limiter! = trivial_limiter!)

SDIRK Method. Description TBD

Keyword Arguments

  • autodiff: Uses ADTypes.jl to specify whether to use automatic differentiation via ForwardDiff.jl or finite differencing via FiniteDiff.jl. Defaults to AutoForwardDiff() for automatic differentiation, which by default uses chunksize = 0, and thus uses the internal ForwardDiff.jl algorithm for the choice. To use FiniteDiff.jl, the AutoFiniteDiff() ADType can be used, which has a keyword argument fdtype with default value Val{:forward}(), and alternatives Val{:central}() and Val{:complex}().
  • standardtag: Specifies whether to use package-specific tags instead of the ForwardDiff default function-specific tags. For more information, see this blog post. Defaults to Val{true}().
  • concrete_jac: Specifies whether a Jacobian should be constructed. Defaults to nothing, which means it will be chosen true/false depending on circumstances of the solver, such as whether a Krylov subspace method is used for linsolve.
  • linsolve: Any LinearSolve.jl compatible linear solver. For example, to use KLU.jl, specify SDIRK22(linsolve = KLUFactorization()). When nothing is passed, uses DefaultLinearSolver.
  • precs: Any LinearSolve.jl-compatible preconditioner can be used as a left or right preconditioner. Preconditioners are specified by the Pl,Pr = precs(W,du,u,p,t,newW,Plprev,Prprev,solverdata) function where the arguments are defined as:
    • W: the current Jacobian of the nonlinear system. Specified as either $I - \gamma J$ or $I/\gamma - J$ depending on the algorithm. This will commonly be a WOperator type defined by OrdinaryDiffEq.jl. It is a lazy representation of the operator. Users can construct the W-matrix on demand by calling convert(AbstractMatrix,W) to receive an AbstractMatrix matching the jac_prototype.
    • du: the current ODE derivative
    • u: the current ODE state
    • p: the ODE parameters
    • t: the current ODE time
    • newW: a Bool which specifies whether the W matrix has been updated since the last call to precs. It is recommended that this is checked to only update the preconditioner when newW == true.
    • Plprev: the previous Pl.
    • Prprev: the previous Pr.
    • solverdata: Optional extra data the solvers can give to the precs function. Solver-dependent and subject to change.
    The return is a tuple (Pl,Pr) of the LinearSolve.jl-compatible preconditioners. To specify one-sided preconditioning, simply return nothing for the preconditioner which is not used. Additionally, precs must supply the dispatch:
    Pl, Pr = precs(W, du, u, p, t, ::Nothing, ::Nothing, ::Nothing, solverdata)
    which is used in the solver setup phase to construct the integrator type with the preconditioners (Pl,Pr). The default is precs=DEFAULT_PRECS where the default preconditioner function is defined as:
    DEFAULT_PRECS(W, du, u, p, t, newW, Plprev, Prprev, solverdata) = nothing, nothing
  • nlsolve: TBD
    • smooth_est: TBD
  • extrapolant: TBD
  • controller: TBD
  • step_limiter!: function of the form limiter!(u, integrator, p, t)

References

@techreport{kennedy2016diagonally, title={Diagonally implicit Runge-Kutta methods for ordinary differential equations. A review}, author={Kennedy, Christopher A and Carpenter, Mark H}, year={2016}}

source
OrdinaryDiffEqSDIRK.SSPSDIRK2Type
SSPSDIRK2(; chunk_size = Val{0}(),
            autodiff = AutoForwardDiff(),
            standardtag = Val{true}(),
            concrete_jac = nothing,
            diff_type = Val{:forward}(),
            linsolve = nothing,
            precs = DEFAULT_PRECS,
            nlsolve = NLNewton(),
            smooth_est = true,
            extrapolant = :constant,
            controller = :PI)

SDIRK Method. SSPSDIRK is an SSP-optimized SDIRK method, so it's an implicit SDIRK method for handling stiffness but if the dt is below the SSP coefficient * dt, then the SSP property of the SSP integrators (the other page) is satisified. As such this is a method which is expected to be good on advection-dominated cases where an explicit SSP integrator would be used, but where reaction equations are sufficient stiff to justify implicit integration.

Keyword Arguments

  • autodiff: Uses ADTypes.jl to specify whether to use automatic differentiation via ForwardDiff.jl or finite differencing via FiniteDiff.jl. Defaults to AutoForwardDiff() for automatic differentiation, which by default uses chunksize = 0, and thus uses the internal ForwardDiff.jl algorithm for the choice. To use FiniteDiff.jl, the AutoFiniteDiff() ADType can be used, which has a keyword argument fdtype with default value Val{:forward}(), and alternatives Val{:central}() and Val{:complex}().
  • standardtag: Specifies whether to use package-specific tags instead of the ForwardDiff default function-specific tags. For more information, see this blog post. Defaults to Val{true}().
  • concrete_jac: Specifies whether a Jacobian should be constructed. Defaults to nothing, which means it will be chosen true/false depending on circumstances of the solver, such as whether a Krylov subspace method is used for linsolve.
  • linsolve: Any LinearSolve.jl compatible linear solver. For example, to use KLU.jl, specify SSPSDIRK2(linsolve = KLUFactorization()). When nothing is passed, uses DefaultLinearSolver.
  • precs: Any LinearSolve.jl-compatible preconditioner can be used as a left or right preconditioner. Preconditioners are specified by the Pl,Pr = precs(W,du,u,p,t,newW,Plprev,Prprev,solverdata) function where the arguments are defined as:
    • W: the current Jacobian of the nonlinear system. Specified as either $I - \gamma J$ or $I/\gamma - J$ depending on the algorithm. This will commonly be a WOperator type defined by OrdinaryDiffEq.jl. It is a lazy representation of the operator. Users can construct the W-matrix on demand by calling convert(AbstractMatrix,W) to receive an AbstractMatrix matching the jac_prototype.
    • du: the current ODE derivative
    • u: the current ODE state
    • p: the ODE parameters
    • t: the current ODE time
    • newW: a Bool which specifies whether the W matrix has been updated since the last call to precs. It is recommended that this is checked to only update the preconditioner when newW == true.
    • Plprev: the previous Pl.
    • Prprev: the previous Pr.
    • solverdata: Optional extra data the solvers can give to the precs function. Solver-dependent and subject to change.
    The return is a tuple (Pl,Pr) of the LinearSolve.jl-compatible preconditioners. To specify one-sided preconditioning, simply return nothing for the preconditioner which is not used. Additionally, precs must supply the dispatch:
    Pl, Pr = precs(W, du, u, p, t, ::Nothing, ::Nothing, ::Nothing, solverdata)
    which is used in the solver setup phase to construct the integrator type with the preconditioners (Pl,Pr). The default is precs=DEFAULT_PRECS where the default preconditioner function is defined as:
    DEFAULT_PRECS(W, du, u, p, t, newW, Plprev, Prprev, solverdata) = nothing, nothing
  • nlsolve: TBD
    • smooth_est: TBD
  • extrapolant: TBD
  • controller: TBD

References

@article{ketcheson2009optimal, title={Optimal implicit strong stability preserving Runge–Kutta methods}, author={Ketcheson, David I and Macdonald, Colin B and Gottlieb, Sigal}, journal={Applied Numerical Mathematics}, volume={59}, number={2}, pages={373–392}, year={2009}, publisher={Elsevier}}

source
OrdinaryDiffEqSDIRK.Kvaerno3Type
Kvaerno3(; chunk_size = Val{0}(),
           autodiff = AutoForwardDiff(),
           standardtag = Val{true}(),
           concrete_jac = nothing,
           diff_type = Val{:forward}(),
           linsolve = nothing,
           precs = DEFAULT_PRECS,
           nlsolve = NLNewton(),
           smooth_est = true,
           extrapolant = :linear,
           controller = :PI,
           step_limiter! = trivial_limiter!)

SDIRK Method. An A-L stable stiffly-accurate 3rd order ESDIRK method.

Keyword Arguments

  • autodiff: Uses ADTypes.jl to specify whether to use automatic differentiation via ForwardDiff.jl or finite differencing via FiniteDiff.jl. Defaults to AutoForwardDiff() for automatic differentiation, which by default uses chunksize = 0, and thus uses the internal ForwardDiff.jl algorithm for the choice. To use FiniteDiff.jl, the AutoFiniteDiff() ADType can be used, which has a keyword argument fdtype with default value Val{:forward}(), and alternatives Val{:central}() and Val{:complex}().
  • standardtag: Specifies whether to use package-specific tags instead of the ForwardDiff default function-specific tags. For more information, see this blog post. Defaults to Val{true}().
  • concrete_jac: Specifies whether a Jacobian should be constructed. Defaults to nothing, which means it will be chosen true/false depending on circumstances of the solver, such as whether a Krylov subspace method is used for linsolve.
  • linsolve: Any LinearSolve.jl compatible linear solver. For example, to use KLU.jl, specify Kvaerno3(linsolve = KLUFactorization()). When nothing is passed, uses DefaultLinearSolver.
  • precs: Any LinearSolve.jl-compatible preconditioner can be used as a left or right preconditioner. Preconditioners are specified by the Pl,Pr = precs(W,du,u,p,t,newW,Plprev,Prprev,solverdata) function where the arguments are defined as:
    • W: the current Jacobian of the nonlinear system. Specified as either $I - \gamma J$ or $I/\gamma - J$ depending on the algorithm. This will commonly be a WOperator type defined by OrdinaryDiffEq.jl. It is a lazy representation of the operator. Users can construct the W-matrix on demand by calling convert(AbstractMatrix,W) to receive an AbstractMatrix matching the jac_prototype.
    • du: the current ODE derivative
    • u: the current ODE state
    • p: the ODE parameters
    • t: the current ODE time
    • newW: a Bool which specifies whether the W matrix has been updated since the last call to precs. It is recommended that this is checked to only update the preconditioner when newW == true.
    • Plprev: the previous Pl.
    • Prprev: the previous Pr.
    • solverdata: Optional extra data the solvers can give to the precs function. Solver-dependent and subject to change.
    The return is a tuple (Pl,Pr) of the LinearSolve.jl-compatible preconditioners. To specify one-sided preconditioning, simply return nothing for the preconditioner which is not used. Additionally, precs must supply the dispatch:
    Pl, Pr = precs(W, du, u, p, t, ::Nothing, ::Nothing, ::Nothing, solverdata)
    which is used in the solver setup phase to construct the integrator type with the preconditioners (Pl,Pr). The default is precs=DEFAULT_PRECS where the default preconditioner function is defined as:
    DEFAULT_PRECS(W, du, u, p, t, newW, Plprev, Prprev, solverdata) = nothing, nothing
  • nlsolve: TBD
    • smooth_est: TBD
  • extrapolant: TBD
  • controller: TBD
  • step_limiter!: function of the form limiter!(u, integrator, p, t)

References

@article{kvaerno2004singly, title={Singly diagonally implicit Runge–Kutta methods with an explicit first stage}, author={Kv{\ae}rn{\o}, Anne}, journal={BIT Numerical Mathematics}, volume={44}, number={3}, pages={489–502}, year={2004}, publisher={Springer}}

source
OrdinaryDiffEqSDIRK.KenCarp3Type
KenCarp3(; chunk_size = Val{0}(),
           autodiff = AutoForwardDiff(),
           standardtag = Val{true}(),
           concrete_jac = nothing,
           diff_type = Val{:forward}(),
           linsolve = nothing,
           precs = DEFAULT_PRECS,
           nlsolve = NLNewton(),
           smooth_est = true,
           extrapolant = :linear,
           controller = :PI,
           step_limiter! = trivial_limiter!)

SDIRK Method. An A-L stable stiffly-accurate 3rd order ESDIRK method with splitting.

Keyword Arguments

  • autodiff: Uses ADTypes.jl to specify whether to use automatic differentiation via ForwardDiff.jl or finite differencing via FiniteDiff.jl. Defaults to AutoForwardDiff() for automatic differentiation, which by default uses chunksize = 0, and thus uses the internal ForwardDiff.jl algorithm for the choice. To use FiniteDiff.jl, the AutoFiniteDiff() ADType can be used, which has a keyword argument fdtype with default value Val{:forward}(), and alternatives Val{:central}() and Val{:complex}().
  • standardtag: Specifies whether to use package-specific tags instead of the ForwardDiff default function-specific tags. For more information, see this blog post. Defaults to Val{true}().
  • concrete_jac: Specifies whether a Jacobian should be constructed. Defaults to nothing, which means it will be chosen true/false depending on circumstances of the solver, such as whether a Krylov subspace method is used for linsolve.
  • linsolve: Any LinearSolve.jl compatible linear solver. For example, to use KLU.jl, specify KenCarp3(linsolve = KLUFactorization()). When nothing is passed, uses DefaultLinearSolver.
  • precs: Any LinearSolve.jl-compatible preconditioner can be used as a left or right preconditioner. Preconditioners are specified by the Pl,Pr = precs(W,du,u,p,t,newW,Plprev,Prprev,solverdata) function where the arguments are defined as:
    • W: the current Jacobian of the nonlinear system. Specified as either $I - \gamma J$ or $I/\gamma - J$ depending on the algorithm. This will commonly be a WOperator type defined by OrdinaryDiffEq.jl. It is a lazy representation of the operator. Users can construct the W-matrix on demand by calling convert(AbstractMatrix,W) to receive an AbstractMatrix matching the jac_prototype.
    • du: the current ODE derivative
    • u: the current ODE state
    • p: the ODE parameters
    • t: the current ODE time
    • newW: a Bool which specifies whether the W matrix has been updated since the last call to precs. It is recommended that this is checked to only update the preconditioner when newW == true.
    • Plprev: the previous Pl.
    • Prprev: the previous Pr.
    • solverdata: Optional extra data the solvers can give to the precs function. Solver-dependent and subject to change.
    The return is a tuple (Pl,Pr) of the LinearSolve.jl-compatible preconditioners. To specify one-sided preconditioning, simply return nothing for the preconditioner which is not used. Additionally, precs must supply the dispatch:
    Pl, Pr = precs(W, du, u, p, t, ::Nothing, ::Nothing, ::Nothing, solverdata)
    which is used in the solver setup phase to construct the integrator type with the preconditioners (Pl,Pr). The default is precs=DEFAULT_PRECS where the default preconditioner function is defined as:
    DEFAULT_PRECS(W, du, u, p, t, newW, Plprev, Prprev, solverdata) = nothing, nothing
  • nlsolve: TBD
    • smooth_est: TBD
  • extrapolant: TBD
  • controller: TBD
  • step_limiter!: function of the form limiter!(u, integrator, p, t)

References

@book{kennedy2001additive, title={Additive Runge-Kutta schemes for convection-diffusion-reaction equations}, author={Kennedy, Christopher Alan}, year={2001}, publisher={National Aeronautics and Space Administration, Langley Research Center}}

source
OrdinaryDiffEqSDIRK.CFNLIRK3Type
CFNLIRK3(; chunk_size = Val{0}(),
           autodiff = AutoForwardDiff(),
           standardtag = Val{true}(),
           concrete_jac = nothing,
           diff_type = Val{:forward}(),
           linsolve = nothing,
           precs = DEFAULT_PRECS,
           nlsolve = NLNewton(),
           extrapolant = :linear)

SDIRK Method. Third order method.

Keyword Arguments

  • autodiff: Uses ADTypes.jl to specify whether to use automatic differentiation via ForwardDiff.jl or finite differencing via FiniteDiff.jl. Defaults to AutoForwardDiff() for automatic differentiation, which by default uses chunksize = 0, and thus uses the internal ForwardDiff.jl algorithm for the choice. To use FiniteDiff.jl, the AutoFiniteDiff() ADType can be used, which has a keyword argument fdtype with default value Val{:forward}(), and alternatives Val{:central}() and Val{:complex}().
  • standardtag: Specifies whether to use package-specific tags instead of the ForwardDiff default function-specific tags. For more information, see this blog post. Defaults to Val{true}().
  • concrete_jac: Specifies whether a Jacobian should be constructed. Defaults to nothing, which means it will be chosen true/false depending on circumstances of the solver, such as whether a Krylov subspace method is used for linsolve.
  • linsolve: Any LinearSolve.jl compatible linear solver. For example, to use KLU.jl, specify CFNLIRK3(linsolve = KLUFactorization()). When nothing is passed, uses DefaultLinearSolver.
  • precs: Any LinearSolve.jl-compatible preconditioner can be used as a left or right preconditioner. Preconditioners are specified by the Pl,Pr = precs(W,du,u,p,t,newW,Plprev,Prprev,solverdata) function where the arguments are defined as:
    • W: the current Jacobian of the nonlinear system. Specified as either $I - \gamma J$ or $I/\gamma - J$ depending on the algorithm. This will commonly be a WOperator type defined by OrdinaryDiffEq.jl. It is a lazy representation of the operator. Users can construct the W-matrix on demand by calling convert(AbstractMatrix,W) to receive an AbstractMatrix matching the jac_prototype.
    • du: the current ODE derivative
    • u: the current ODE state
    • p: the ODE parameters
    • t: the current ODE time
    • newW: a Bool which specifies whether the W matrix has been updated since the last call to precs. It is recommended that this is checked to only update the preconditioner when newW == true.
    • Plprev: the previous Pl.
    • Prprev: the previous Pr.
    • solverdata: Optional extra data the solvers can give to the precs function. Solver-dependent and subject to change.
    The return is a tuple (Pl,Pr) of the LinearSolve.jl-compatible preconditioners. To specify one-sided preconditioning, simply return nothing for the preconditioner which is not used. Additionally, precs must supply the dispatch:
    Pl, Pr = precs(W, du, u, p, t, ::Nothing, ::Nothing, ::Nothing, solverdata)
    which is used in the solver setup phase to construct the integrator type with the preconditioners (Pl,Pr). The default is precs=DEFAULT_PRECS where the default preconditioner function is defined as:
    DEFAULT_PRECS(W, du, u, p, t, newW, Plprev, Prprev, solverdata) = nothing, nothing
  • nlsolve: TBD
    • extrapolant: TBD

References

@article{calvo2001linearly, title={Linearly implicit Runge–Kutta methods for advection–reaction–diffusion equations}, author={Calvo, MP and De Frutos, J and Novo, J}, journal={Applied Numerical Mathematics}, volume={37}, number={4}, pages={535–549}, year={2001}, publisher={Elsevier}}

source
OrdinaryDiffEqSDIRK.Cash4Type
Cash4(; chunk_size = Val{0}(),
        autodiff = AutoForwardDiff(),
        standardtag = Val{true}(),
        concrete_jac = nothing,
        diff_type = Val{:forward}(),
        linsolve = nothing,
        precs = DEFAULT_PRECS,
        nlsolve = NLNewton(),
        smooth_est = true,
        extrapolant = :linear,
        controller = :PI,
        embedding = 3)

SDIRK Method. An A-L stable 4th order SDIRK method.

Keyword Arguments

  • autodiff: Uses ADTypes.jl to specify whether to use automatic differentiation via ForwardDiff.jl or finite differencing via FiniteDiff.jl. Defaults to AutoForwardDiff() for automatic differentiation, which by default uses chunksize = 0, and thus uses the internal ForwardDiff.jl algorithm for the choice. To use FiniteDiff.jl, the AutoFiniteDiff() ADType can be used, which has a keyword argument fdtype with default value Val{:forward}(), and alternatives Val{:central}() and Val{:complex}().
  • standardtag: Specifies whether to use package-specific tags instead of the ForwardDiff default function-specific tags. For more information, see this blog post. Defaults to Val{true}().
  • concrete_jac: Specifies whether a Jacobian should be constructed. Defaults to nothing, which means it will be chosen true/false depending on circumstances of the solver, such as whether a Krylov subspace method is used for linsolve.
  • linsolve: Any LinearSolve.jl compatible linear solver. For example, to use KLU.jl, specify Cash4(linsolve = KLUFactorization()). When nothing is passed, uses DefaultLinearSolver.
  • precs: Any LinearSolve.jl-compatible preconditioner can be used as a left or right preconditioner. Preconditioners are specified by the Pl,Pr = precs(W,du,u,p,t,newW,Plprev,Prprev,solverdata) function where the arguments are defined as:
    • W: the current Jacobian of the nonlinear system. Specified as either $I - \gamma J$ or $I/\gamma - J$ depending on the algorithm. This will commonly be a WOperator type defined by OrdinaryDiffEq.jl. It is a lazy representation of the operator. Users can construct the W-matrix on demand by calling convert(AbstractMatrix,W) to receive an AbstractMatrix matching the jac_prototype.
    • du: the current ODE derivative
    • u: the current ODE state
    • p: the ODE parameters
    • t: the current ODE time
    • newW: a Bool which specifies whether the W matrix has been updated since the last call to precs. It is recommended that this is checked to only update the preconditioner when newW == true.
    • Plprev: the previous Pl.
    • Prprev: the previous Pr.
    • solverdata: Optional extra data the solvers can give to the precs function. Solver-dependent and subject to change.
    The return is a tuple (Pl,Pr) of the LinearSolve.jl-compatible preconditioners. To specify one-sided preconditioning, simply return nothing for the preconditioner which is not used. Additionally, precs must supply the dispatch:
    Pl, Pr = precs(W, du, u, p, t, ::Nothing, ::Nothing, ::Nothing, solverdata)
    which is used in the solver setup phase to construct the integrator type with the preconditioners (Pl,Pr). The default is precs=DEFAULT_PRECS where the default preconditioner function is defined as:
    DEFAULT_PRECS(W, du, u, p, t, newW, Plprev, Prprev, solverdata) = nothing, nothing
  • nlsolve: TBD
    • smooth_est: TBD
  • extrapolant: TBD
  • controller: TBD
  • embedding: TBD

References

@article{hindmarsh2005sundials, title={{SUNDIALS}: Suite of nonlinear and differential/algebraic equation solvers}, author={Hindmarsh, Alan C and Brown, Peter N and Grant, Keith E and Lee, Steven L and Serban, Radu and Shumaker, Dan E and Woodward, Carol S}, journal={ACM Transactions on Mathematical Software (TOMS)}, volume={31}, number={3}, pages={363–396}, year={2005}, publisher={ACM}}

source
OrdinaryDiffEqSDIRK.SFSDIRK4Type
SFSDIRK4(; chunk_size = Val{0}(),
           autodiff = AutoForwardDiff(),
           standardtag = Val{true}(),
           concrete_jac = nothing,
           diff_type = Val{:forward}(),
           linsolve = nothing,
           precs = DEFAULT_PRECS,
           nlsolve = NLNewton(),
           extrapolant = :linear)

SDIRK Method. Method of order 4.

Keyword Arguments

  • autodiff: Uses ADTypes.jl to specify whether to use automatic differentiation via ForwardDiff.jl or finite differencing via FiniteDiff.jl. Defaults to AutoForwardDiff() for automatic differentiation, which by default uses chunksize = 0, and thus uses the internal ForwardDiff.jl algorithm for the choice. To use FiniteDiff.jl, the AutoFiniteDiff() ADType can be used, which has a keyword argument fdtype with default value Val{:forward}(), and alternatives Val{:central}() and Val{:complex}().
  • standardtag: Specifies whether to use package-specific tags instead of the ForwardDiff default function-specific tags. For more information, see this blog post. Defaults to Val{true}().
  • concrete_jac: Specifies whether a Jacobian should be constructed. Defaults to nothing, which means it will be chosen true/false depending on circumstances of the solver, such as whether a Krylov subspace method is used for linsolve.
  • linsolve: Any LinearSolve.jl compatible linear solver. For example, to use KLU.jl, specify SFSDIRK4(linsolve = KLUFactorization()). When nothing is passed, uses DefaultLinearSolver.
  • precs: Any LinearSolve.jl-compatible preconditioner can be used as a left or right preconditioner. Preconditioners are specified by the Pl,Pr = precs(W,du,u,p,t,newW,Plprev,Prprev,solverdata) function where the arguments are defined as:
    • W: the current Jacobian of the nonlinear system. Specified as either $I - \gamma J$ or $I/\gamma - J$ depending on the algorithm. This will commonly be a WOperator type defined by OrdinaryDiffEq.jl. It is a lazy representation of the operator. Users can construct the W-matrix on demand by calling convert(AbstractMatrix,W) to receive an AbstractMatrix matching the jac_prototype.
    • du: the current ODE derivative
    • u: the current ODE state
    • p: the ODE parameters
    • t: the current ODE time
    • newW: a Bool which specifies whether the W matrix has been updated since the last call to precs. It is recommended that this is checked to only update the preconditioner when newW == true.
    • Plprev: the previous Pl.
    • Prprev: the previous Pr.
    • solverdata: Optional extra data the solvers can give to the precs function. Solver-dependent and subject to change.
    The return is a tuple (Pl,Pr) of the LinearSolve.jl-compatible preconditioners. To specify one-sided preconditioning, simply return nothing for the preconditioner which is not used. Additionally, precs must supply the dispatch:
    Pl, Pr = precs(W, du, u, p, t, ::Nothing, ::Nothing, ::Nothing, solverdata)
    which is used in the solver setup phase to construct the integrator type with the preconditioners (Pl,Pr). The default is precs=DEFAULT_PRECS where the default preconditioner function is defined as:
    DEFAULT_PRECS(W, du, u, p, t, newW, Plprev, Prprev, solverdata) = nothing, nothing
  • nlsolve: TBD
    • extrapolant: TBD

References

@article{ferracina2008strong, title={Strong stability of singly-diagonally-implicit Runge–Kutta methods}, author={Ferracina, Luca and Spijker, MN}, journal={Applied Numerical Mathematics}, volume={58}, number={11}, pages={1675–1686}, year={2008}, publisher={Elsevier}}

source
OrdinaryDiffEqSDIRK.SFSDIRK5Type
SFSDIRK5(; chunk_size = Val{0}(),
           autodiff = AutoForwardDiff(),
           standardtag = Val{true}(),
           concrete_jac = nothing,
           diff_type = Val{:forward}(),
           linsolve = nothing,
           precs = DEFAULT_PRECS,
           nlsolve = NLNewton(),
           extrapolant = :linear)

SDIRK Method. Method of order 5.

Keyword Arguments

  • autodiff: Uses ADTypes.jl to specify whether to use automatic differentiation via ForwardDiff.jl or finite differencing via FiniteDiff.jl. Defaults to AutoForwardDiff() for automatic differentiation, which by default uses chunksize = 0, and thus uses the internal ForwardDiff.jl algorithm for the choice. To use FiniteDiff.jl, the AutoFiniteDiff() ADType can be used, which has a keyword argument fdtype with default value Val{:forward}(), and alternatives Val{:central}() and Val{:complex}().
  • standardtag: Specifies whether to use package-specific tags instead of the ForwardDiff default function-specific tags. For more information, see this blog post. Defaults to Val{true}().
  • concrete_jac: Specifies whether a Jacobian should be constructed. Defaults to nothing, which means it will be chosen true/false depending on circumstances of the solver, such as whether a Krylov subspace method is used for linsolve.
  • linsolve: Any LinearSolve.jl compatible linear solver. For example, to use KLU.jl, specify SFSDIRK5(linsolve = KLUFactorization()). When nothing is passed, uses DefaultLinearSolver.
  • precs: Any LinearSolve.jl-compatible preconditioner can be used as a left or right preconditioner. Preconditioners are specified by the Pl,Pr = precs(W,du,u,p,t,newW,Plprev,Prprev,solverdata) function where the arguments are defined as:
    • W: the current Jacobian of the nonlinear system. Specified as either $I - \gamma J$ or $I/\gamma - J$ depending on the algorithm. This will commonly be a WOperator type defined by OrdinaryDiffEq.jl. It is a lazy representation of the operator. Users can construct the W-matrix on demand by calling convert(AbstractMatrix,W) to receive an AbstractMatrix matching the jac_prototype.
    • du: the current ODE derivative
    • u: the current ODE state
    • p: the ODE parameters
    • t: the current ODE time
    • newW: a Bool which specifies whether the W matrix has been updated since the last call to precs. It is recommended that this is checked to only update the preconditioner when newW == true.
    • Plprev: the previous Pl.
    • Prprev: the previous Pr.
    • solverdata: Optional extra data the solvers can give to the precs function. Solver-dependent and subject to change.
    The return is a tuple (Pl,Pr) of the LinearSolve.jl-compatible preconditioners. To specify one-sided preconditioning, simply return nothing for the preconditioner which is not used. Additionally, precs must supply the dispatch:
    Pl, Pr = precs(W, du, u, p, t, ::Nothing, ::Nothing, ::Nothing, solverdata)
    which is used in the solver setup phase to construct the integrator type with the preconditioners (Pl,Pr). The default is precs=DEFAULT_PRECS where the default preconditioner function is defined as:
    DEFAULT_PRECS(W, du, u, p, t, newW, Plprev, Prprev, solverdata) = nothing, nothing
  • nlsolve: TBD
    • extrapolant: TBD

References

@article{ferracina2008strong, title={Strong stability of singly-diagonally-implicit Runge–Kutta methods}, author={Ferracina, Luca and Spijker, MN}, journal={Applied Numerical Mathematics}, volume={58}, number={11}, pages={1675–1686}, year={2008}, publisher={Elsevier}}

source
OrdinaryDiffEqSDIRK.SFSDIRK6Type
SFSDIRK6(; chunk_size = Val{0}(),
           autodiff = AutoForwardDiff(),
           standardtag = Val{true}(),
           concrete_jac = nothing,
           diff_type = Val{:forward}(),
           linsolve = nothing,
           precs = DEFAULT_PRECS,
           nlsolve = NLNewton(),
           extrapolant = :linear)

SDIRK Method. Method of order 6.

Keyword Arguments

  • autodiff: Uses ADTypes.jl to specify whether to use automatic differentiation via ForwardDiff.jl or finite differencing via FiniteDiff.jl. Defaults to AutoForwardDiff() for automatic differentiation, which by default uses chunksize = 0, and thus uses the internal ForwardDiff.jl algorithm for the choice. To use FiniteDiff.jl, the AutoFiniteDiff() ADType can be used, which has a keyword argument fdtype with default value Val{:forward}(), and alternatives Val{:central}() and Val{:complex}().
  • standardtag: Specifies whether to use package-specific tags instead of the ForwardDiff default function-specific tags. For more information, see this blog post. Defaults to Val{true}().
  • concrete_jac: Specifies whether a Jacobian should be constructed. Defaults to nothing, which means it will be chosen true/false depending on circumstances of the solver, such as whether a Krylov subspace method is used for linsolve.
  • linsolve: Any LinearSolve.jl compatible linear solver. For example, to use KLU.jl, specify SFSDIRK6(linsolve = KLUFactorization()). When nothing is passed, uses DefaultLinearSolver.
  • precs: Any LinearSolve.jl-compatible preconditioner can be used as a left or right preconditioner. Preconditioners are specified by the Pl,Pr = precs(W,du,u,p,t,newW,Plprev,Prprev,solverdata) function where the arguments are defined as:
    • W: the current Jacobian of the nonlinear system. Specified as either $I - \gamma J$ or $I/\gamma - J$ depending on the algorithm. This will commonly be a WOperator type defined by OrdinaryDiffEq.jl. It is a lazy representation of the operator. Users can construct the W-matrix on demand by calling convert(AbstractMatrix,W) to receive an AbstractMatrix matching the jac_prototype.
    • du: the current ODE derivative
    • u: the current ODE state
    • p: the ODE parameters
    • t: the current ODE time
    • newW: a Bool which specifies whether the W matrix has been updated since the last call to precs. It is recommended that this is checked to only update the preconditioner when newW == true.
    • Plprev: the previous Pl.
    • Prprev: the previous Pr.
    • solverdata: Optional extra data the solvers can give to the precs function. Solver-dependent and subject to change.
    The return is a tuple (Pl,Pr) of the LinearSolve.jl-compatible preconditioners. To specify one-sided preconditioning, simply return nothing for the preconditioner which is not used. Additionally, precs must supply the dispatch:
    Pl, Pr = precs(W, du, u, p, t, ::Nothing, ::Nothing, ::Nothing, solverdata)
    which is used in the solver setup phase to construct the integrator type with the preconditioners (Pl,Pr). The default is precs=DEFAULT_PRECS where the default preconditioner function is defined as:
    DEFAULT_PRECS(W, du, u, p, t, newW, Plprev, Prprev, solverdata) = nothing, nothing
  • nlsolve: TBD
    • extrapolant: TBD

References

@article{ferracina2008strong, title={Strong stability of singly-diagonally-implicit Runge–Kutta methods}, author={Ferracina, Luca and Spijker, MN}, journal={Applied Numerical Mathematics}, volume={58}, number={11}, pages={1675–1686}, year={2008}, publisher={Elsevier}}

source
OrdinaryDiffEqSDIRK.SFSDIRK7Type
SFSDIRK7(; chunk_size = Val{0}(),
           autodiff = AutoForwardDiff(),
           standardtag = Val{true}(),
           concrete_jac = nothing,
           diff_type = Val{:forward}(),
           linsolve = nothing,
           precs = DEFAULT_PRECS,
           nlsolve = NLNewton(),
           extrapolant = :linear)

SDIRK Method. Method of order 7.

Keyword Arguments

  • autodiff: Uses ADTypes.jl to specify whether to use automatic differentiation via ForwardDiff.jl or finite differencing via FiniteDiff.jl. Defaults to AutoForwardDiff() for automatic differentiation, which by default uses chunksize = 0, and thus uses the internal ForwardDiff.jl algorithm for the choice. To use FiniteDiff.jl, the AutoFiniteDiff() ADType can be used, which has a keyword argument fdtype with default value Val{:forward}(), and alternatives Val{:central}() and Val{:complex}().
  • standardtag: Specifies whether to use package-specific tags instead of the ForwardDiff default function-specific tags. For more information, see this blog post. Defaults to Val{true}().
  • concrete_jac: Specifies whether a Jacobian should be constructed. Defaults to nothing, which means it will be chosen true/false depending on circumstances of the solver, such as whether a Krylov subspace method is used for linsolve.
  • linsolve: Any LinearSolve.jl compatible linear solver. For example, to use KLU.jl, specify SFSDIRK7(linsolve = KLUFactorization()). When nothing is passed, uses DefaultLinearSolver.
  • precs: Any LinearSolve.jl-compatible preconditioner can be used as a left or right preconditioner. Preconditioners are specified by the Pl,Pr = precs(W,du,u,p,t,newW,Plprev,Prprev,solverdata) function where the arguments are defined as:
    • W: the current Jacobian of the nonlinear system. Specified as either $I - \gamma J$ or $I/\gamma - J$ depending on the algorithm. This will commonly be a WOperator type defined by OrdinaryDiffEq.jl. It is a lazy representation of the operator. Users can construct the W-matrix on demand by calling convert(AbstractMatrix,W) to receive an AbstractMatrix matching the jac_prototype.
    • du: the current ODE derivative
    • u: the current ODE state
    • p: the ODE parameters
    • t: the current ODE time
    • newW: a Bool which specifies whether the W matrix has been updated since the last call to precs. It is recommended that this is checked to only update the preconditioner when newW == true.
    • Plprev: the previous Pl.
    • Prprev: the previous Pr.
    • solverdata: Optional extra data the solvers can give to the precs function. Solver-dependent and subject to change.
    The return is a tuple (Pl,Pr) of the LinearSolve.jl-compatible preconditioners. To specify one-sided preconditioning, simply return nothing for the preconditioner which is not used. Additionally, precs must supply the dispatch:
    Pl, Pr = precs(W, du, u, p, t, ::Nothing, ::Nothing, ::Nothing, solverdata)
    which is used in the solver setup phase to construct the integrator type with the preconditioners (Pl,Pr). The default is precs=DEFAULT_PRECS where the default preconditioner function is defined as:
    DEFAULT_PRECS(W, du, u, p, t, newW, Plprev, Prprev, solverdata) = nothing, nothing
  • nlsolve: TBD
    • extrapolant: TBD

References

@article{ferracina2008strong, title={Strong stability of singly-diagonally-implicit Runge–Kutta methods}, author={Ferracina, Luca and Spijker, MN}, journal={Applied Numerical Mathematics}, volume={58}, number={11}, pages={1675–1686}, year={2008}, publisher={Elsevier}}

source
OrdinaryDiffEqSDIRK.SFSDIRK8Type
SFSDIRK8(; chunk_size = Val{0}(),
           autodiff = AutoForwardDiff(),
           standardtag = Val{true}(),
           concrete_jac = nothing,
           diff_type = Val{:forward}(),
           linsolve = nothing,
           precs = DEFAULT_PRECS,
           nlsolve = NLNewton(),
           extrapolant = :linear)

SDIRK Method. Method of order 8.

Keyword Arguments

  • autodiff: Uses ADTypes.jl to specify whether to use automatic differentiation via ForwardDiff.jl or finite differencing via FiniteDiff.jl. Defaults to AutoForwardDiff() for automatic differentiation, which by default uses chunksize = 0, and thus uses the internal ForwardDiff.jl algorithm for the choice. To use FiniteDiff.jl, the AutoFiniteDiff() ADType can be used, which has a keyword argument fdtype with default value Val{:forward}(), and alternatives Val{:central}() and Val{:complex}().
  • standardtag: Specifies whether to use package-specific tags instead of the ForwardDiff default function-specific tags. For more information, see this blog post. Defaults to Val{true}().
  • concrete_jac: Specifies whether a Jacobian should be constructed. Defaults to nothing, which means it will be chosen true/false depending on circumstances of the solver, such as whether a Krylov subspace method is used for linsolve.
  • linsolve: Any LinearSolve.jl compatible linear solver. For example, to use KLU.jl, specify SFSDIRK8(linsolve = KLUFactorization()). When nothing is passed, uses DefaultLinearSolver.
  • precs: Any LinearSolve.jl-compatible preconditioner can be used as a left or right preconditioner. Preconditioners are specified by the Pl,Pr = precs(W,du,u,p,t,newW,Plprev,Prprev,solverdata) function where the arguments are defined as:
    • W: the current Jacobian of the nonlinear system. Specified as either $I - \gamma J$ or $I/\gamma - J$ depending on the algorithm. This will commonly be a WOperator type defined by OrdinaryDiffEq.jl. It is a lazy representation of the operator. Users can construct the W-matrix on demand by calling convert(AbstractMatrix,W) to receive an AbstractMatrix matching the jac_prototype.
    • du: the current ODE derivative
    • u: the current ODE state
    • p: the ODE parameters
    • t: the current ODE time
    • newW: a Bool which specifies whether the W matrix has been updated since the last call to precs. It is recommended that this is checked to only update the preconditioner when newW == true.
    • Plprev: the previous Pl.
    • Prprev: the previous Pr.
    • solverdata: Optional extra data the solvers can give to the precs function. Solver-dependent and subject to change.
    The return is a tuple (Pl,Pr) of the LinearSolve.jl-compatible preconditioners. To specify one-sided preconditioning, simply return nothing for the preconditioner which is not used. Additionally, precs must supply the dispatch:
    Pl, Pr = precs(W, du, u, p, t, ::Nothing, ::Nothing, ::Nothing, solverdata)
    which is used in the solver setup phase to construct the integrator type with the preconditioners (Pl,Pr). The default is precs=DEFAULT_PRECS where the default preconditioner function is defined as:
    DEFAULT_PRECS(W, du, u, p, t, newW, Plprev, Prprev, solverdata) = nothing, nothing
  • nlsolve: TBD
    • extrapolant: TBD

References

@article{ferracina2008strong, title={Strong stability of singly-diagonally-implicit Runge–Kutta methods}, author={Ferracina, Luca and Spijker, MN}, journal={Applied Numerical Mathematics}, volume={58}, number={11}, pages={1675–1686}, year={2008}, publisher={Elsevier}}

source
OrdinaryDiffEqSDIRK.Hairer4Type
Hairer4(; chunk_size = Val{0}(),
          autodiff = AutoForwardDiff(),
          standardtag = Val{true}(),
          concrete_jac = nothing,
          diff_type = Val{:forward}(),
          linsolve = nothing,
          precs = DEFAULT_PRECS,
          nlsolve = NLNewton(),
          smooth_est = true,
          extrapolant = :linear,
          controller = :PI)

SDIRK Method. An A-L stable 4th order SDIRK method.

Keyword Arguments

  • autodiff: Uses ADTypes.jl to specify whether to use automatic differentiation via ForwardDiff.jl or finite differencing via FiniteDiff.jl. Defaults to AutoForwardDiff() for automatic differentiation, which by default uses chunksize = 0, and thus uses the internal ForwardDiff.jl algorithm for the choice. To use FiniteDiff.jl, the AutoFiniteDiff() ADType can be used, which has a keyword argument fdtype with default value Val{:forward}(), and alternatives Val{:central}() and Val{:complex}().
  • standardtag: Specifies whether to use package-specific tags instead of the ForwardDiff default function-specific tags. For more information, see this blog post. Defaults to Val{true}().
  • concrete_jac: Specifies whether a Jacobian should be constructed. Defaults to nothing, which means it will be chosen true/false depending on circumstances of the solver, such as whether a Krylov subspace method is used for linsolve.
  • linsolve: Any LinearSolve.jl compatible linear solver. For example, to use KLU.jl, specify Hairer4(linsolve = KLUFactorization()). When nothing is passed, uses DefaultLinearSolver.
  • precs: Any LinearSolve.jl-compatible preconditioner can be used as a left or right preconditioner. Preconditioners are specified by the Pl,Pr = precs(W,du,u,p,t,newW,Plprev,Prprev,solverdata) function where the arguments are defined as:
    • W: the current Jacobian of the nonlinear system. Specified as either $I - \gamma J$ or $I/\gamma - J$ depending on the algorithm. This will commonly be a WOperator type defined by OrdinaryDiffEq.jl. It is a lazy representation of the operator. Users can construct the W-matrix on demand by calling convert(AbstractMatrix,W) to receive an AbstractMatrix matching the jac_prototype.
    • du: the current ODE derivative
    • u: the current ODE state
    • p: the ODE parameters
    • t: the current ODE time
    • newW: a Bool which specifies whether the W matrix has been updated since the last call to precs. It is recommended that this is checked to only update the preconditioner when newW == true.
    • Plprev: the previous Pl.
    • Prprev: the previous Pr.
    • solverdata: Optional extra data the solvers can give to the precs function. Solver-dependent and subject to change.
    The return is a tuple (Pl,Pr) of the LinearSolve.jl-compatible preconditioners. To specify one-sided preconditioning, simply return nothing for the preconditioner which is not used. Additionally, precs must supply the dispatch:
    Pl, Pr = precs(W, du, u, p, t, ::Nothing, ::Nothing, ::Nothing, solverdata)
    which is used in the solver setup phase to construct the integrator type with the preconditioners (Pl,Pr). The default is precs=DEFAULT_PRECS where the default preconditioner function is defined as:
    DEFAULT_PRECS(W, du, u, p, t, newW, Plprev, Prprev, solverdata) = nothing, nothing
  • nlsolve: TBD
    • smooth_est: TBD
  • extrapolant: TBD
  • controller: TBD

References

E. Hairer, G. Wanner, Solving ordinary differential equations II, stiff and differential-algebraic problems. Computational mathematics (2nd revised ed.), Springer (1996)

source
OrdinaryDiffEqSDIRK.Hairer42Type
Hairer42(; chunk_size = Val{0}(),
           autodiff = AutoForwardDiff(),
           standardtag = Val{true}(),
           concrete_jac = nothing,
           diff_type = Val{:forward}(),
           linsolve = nothing,
           precs = DEFAULT_PRECS,
           nlsolve = NLNewton(),
           smooth_est = true,
           extrapolant = :linear,
           controller = :PI)

SDIRK Method. An A-L stable 4th order SDIRK method.

Keyword Arguments

  • autodiff: Uses ADTypes.jl to specify whether to use automatic differentiation via ForwardDiff.jl or finite differencing via FiniteDiff.jl. Defaults to AutoForwardDiff() for automatic differentiation, which by default uses chunksize = 0, and thus uses the internal ForwardDiff.jl algorithm for the choice. To use FiniteDiff.jl, the AutoFiniteDiff() ADType can be used, which has a keyword argument fdtype with default value Val{:forward}(), and alternatives Val{:central}() and Val{:complex}().
  • standardtag: Specifies whether to use package-specific tags instead of the ForwardDiff default function-specific tags. For more information, see this blog post. Defaults to Val{true}().
  • concrete_jac: Specifies whether a Jacobian should be constructed. Defaults to nothing, which means it will be chosen true/false depending on circumstances of the solver, such as whether a Krylov subspace method is used for linsolve.
  • linsolve: Any LinearSolve.jl compatible linear solver. For example, to use KLU.jl, specify Hairer42(linsolve = KLUFactorization()). When nothing is passed, uses DefaultLinearSolver.
  • precs: Any LinearSolve.jl-compatible preconditioner can be used as a left or right preconditioner. Preconditioners are specified by the Pl,Pr = precs(W,du,u,p,t,newW,Plprev,Prprev,solverdata) function where the arguments are defined as:
    • W: the current Jacobian of the nonlinear system. Specified as either $I - \gamma J$ or $I/\gamma - J$ depending on the algorithm. This will commonly be a WOperator type defined by OrdinaryDiffEq.jl. It is a lazy representation of the operator. Users can construct the W-matrix on demand by calling convert(AbstractMatrix,W) to receive an AbstractMatrix matching the jac_prototype.
    • du: the current ODE derivative
    • u: the current ODE state
    • p: the ODE parameters
    • t: the current ODE time
    • newW: a Bool which specifies whether the W matrix has been updated since the last call to precs. It is recommended that this is checked to only update the preconditioner when newW == true.
    • Plprev: the previous Pl.
    • Prprev: the previous Pr.
    • solverdata: Optional extra data the solvers can give to the precs function. Solver-dependent and subject to change.
    The return is a tuple (Pl,Pr) of the LinearSolve.jl-compatible preconditioners. To specify one-sided preconditioning, simply return nothing for the preconditioner which is not used. Additionally, precs must supply the dispatch:
    Pl, Pr = precs(W, du, u, p, t, ::Nothing, ::Nothing, ::Nothing, solverdata)
    which is used in the solver setup phase to construct the integrator type with the preconditioners (Pl,Pr). The default is precs=DEFAULT_PRECS where the default preconditioner function is defined as:
    DEFAULT_PRECS(W, du, u, p, t, newW, Plprev, Prprev, solverdata) = nothing, nothing
  • nlsolve: TBD
    • smooth_est: TBD
  • extrapolant: TBD
  • controller: TBD

References

E. Hairer, G. Wanner, Solving ordinary differential equations II, stiff and differential-algebraic problems. Computational mathematics (2nd revised ed.), Springer (1996)

source
OrdinaryDiffEqSDIRK.Kvaerno4Type
Kvaerno4(; chunk_size = Val{0}(),
           autodiff = AutoForwardDiff(),
           standardtag = Val{true}(),
           concrete_jac = nothing,
           diff_type = Val{:forward}(),
           linsolve = nothing,
           precs = DEFAULT_PRECS,
           nlsolve = NLNewton(),
           smooth_est = true,
           extrapolant = :linear,
           controller = :PI,
           step_limiter! = trivial_limiter!)

SDIRK Method. An A-L stable stiffly-accurate 4th order ESDIRK method.

Keyword Arguments

  • autodiff: Uses ADTypes.jl to specify whether to use automatic differentiation via ForwardDiff.jl or finite differencing via FiniteDiff.jl. Defaults to AutoForwardDiff() for automatic differentiation, which by default uses chunksize = 0, and thus uses the internal ForwardDiff.jl algorithm for the choice. To use FiniteDiff.jl, the AutoFiniteDiff() ADType can be used, which has a keyword argument fdtype with default value Val{:forward}(), and alternatives Val{:central}() and Val{:complex}().
  • standardtag: Specifies whether to use package-specific tags instead of the ForwardDiff default function-specific tags. For more information, see this blog post. Defaults to Val{true}().
  • concrete_jac: Specifies whether a Jacobian should be constructed. Defaults to nothing, which means it will be chosen true/false depending on circumstances of the solver, such as whether a Krylov subspace method is used for linsolve.
  • linsolve: Any LinearSolve.jl compatible linear solver. For example, to use KLU.jl, specify Kvaerno4(linsolve = KLUFactorization()). When nothing is passed, uses DefaultLinearSolver.
  • precs: Any LinearSolve.jl-compatible preconditioner can be used as a left or right preconditioner. Preconditioners are specified by the Pl,Pr = precs(W,du,u,p,t,newW,Plprev,Prprev,solverdata) function where the arguments are defined as:
    • W: the current Jacobian of the nonlinear system. Specified as either $I - \gamma J$ or $I/\gamma - J$ depending on the algorithm. This will commonly be a WOperator type defined by OrdinaryDiffEq.jl. It is a lazy representation of the operator. Users can construct the W-matrix on demand by calling convert(AbstractMatrix,W) to receive an AbstractMatrix matching the jac_prototype.
    • du: the current ODE derivative
    • u: the current ODE state
    • p: the ODE parameters
    • t: the current ODE time
    • newW: a Bool which specifies whether the W matrix has been updated since the last call to precs. It is recommended that this is checked to only update the preconditioner when newW == true.
    • Plprev: the previous Pl.
    • Prprev: the previous Pr.
    • solverdata: Optional extra data the solvers can give to the precs function. Solver-dependent and subject to change.
    The return is a tuple (Pl,Pr) of the LinearSolve.jl-compatible preconditioners. To specify one-sided preconditioning, simply return nothing for the preconditioner which is not used. Additionally, precs must supply the dispatch:
    Pl, Pr = precs(W, du, u, p, t, ::Nothing, ::Nothing, ::Nothing, solverdata)
    which is used in the solver setup phase to construct the integrator type with the preconditioners (Pl,Pr). The default is precs=DEFAULT_PRECS where the default preconditioner function is defined as:
    DEFAULT_PRECS(W, du, u, p, t, newW, Plprev, Prprev, solverdata) = nothing, nothing
  • nlsolve: TBD
    • smooth_est: TBD
  • extrapolant: TBD
  • controller: TBD
  • step_limiter: TBD

References

@article{kvaerno2004singly, title={Singly diagonally implicit Runge–Kutta methods with an explicit first stage}, author={Kv{\ae}rn{\o}, Anne}, journal={BIT Numerical Mathematics}, volume={44}, number={3}, pages={489–502}, year={2004}, publisher={Springer}}

source
OrdinaryDiffEqSDIRK.Kvaerno5Type
Kvaerno5(; chunk_size = Val{0}(),
           autodiff = AutoForwardDiff(),
           standardtag = Val{true}(),
           concrete_jac = nothing,
           diff_type = Val{:forward}(),
           linsolve = nothing,
           precs = DEFAULT_PRECS,
           nlsolve = NLNewton(),
           smooth_est = true,
           extrapolant = :linear,
           controller = :PI,
           step_limiter! = trivial_limiter!)

SDIRK Method. An A-L stable stiffly-accurate 5th order ESDIRK method.

Keyword Arguments

  • autodiff: Uses ADTypes.jl to specify whether to use automatic differentiation via ForwardDiff.jl or finite differencing via FiniteDiff.jl. Defaults to AutoForwardDiff() for automatic differentiation, which by default uses chunksize = 0, and thus uses the internal ForwardDiff.jl algorithm for the choice. To use FiniteDiff.jl, the AutoFiniteDiff() ADType can be used, which has a keyword argument fdtype with default value Val{:forward}(), and alternatives Val{:central}() and Val{:complex}().
  • standardtag: Specifies whether to use package-specific tags instead of the ForwardDiff default function-specific tags. For more information, see this blog post. Defaults to Val{true}().
  • concrete_jac: Specifies whether a Jacobian should be constructed. Defaults to nothing, which means it will be chosen true/false depending on circumstances of the solver, such as whether a Krylov subspace method is used for linsolve.
  • linsolve: Any LinearSolve.jl compatible linear solver. For example, to use KLU.jl, specify Kvaerno5(linsolve = KLUFactorization()). When nothing is passed, uses DefaultLinearSolver.
  • precs: Any LinearSolve.jl-compatible preconditioner can be used as a left or right preconditioner. Preconditioners are specified by the Pl,Pr = precs(W,du,u,p,t,newW,Plprev,Prprev,solverdata) function where the arguments are defined as:
    • W: the current Jacobian of the nonlinear system. Specified as either $I - \gamma J$ or $I/\gamma - J$ depending on the algorithm. This will commonly be a WOperator type defined by OrdinaryDiffEq.jl. It is a lazy representation of the operator. Users can construct the W-matrix on demand by calling convert(AbstractMatrix,W) to receive an AbstractMatrix matching the jac_prototype.
    • du: the current ODE derivative
    • u: the current ODE state
    • p: the ODE parameters
    • t: the current ODE time
    • newW: a Bool which specifies whether the W matrix has been updated since the last call to precs. It is recommended that this is checked to only update the preconditioner when newW == true.
    • Plprev: the previous Pl.
    • Prprev: the previous Pr.
    • solverdata: Optional extra data the solvers can give to the precs function. Solver-dependent and subject to change.
    The return is a tuple (Pl,Pr) of the LinearSolve.jl-compatible preconditioners. To specify one-sided preconditioning, simply return nothing for the preconditioner which is not used. Additionally, precs must supply the dispatch:
    Pl, Pr = precs(W, du, u, p, t, ::Nothing, ::Nothing, ::Nothing, solverdata)
    which is used in the solver setup phase to construct the integrator type with the preconditioners (Pl,Pr). The default is precs=DEFAULT_PRECS where the default preconditioner function is defined as:
    DEFAULT_PRECS(W, du, u, p, t, newW, Plprev, Prprev, solverdata) = nothing, nothing
  • nlsolve: TBD
    • smooth_est: TBD
  • extrapolant: TBD
  • controller: TBD
  • step_limiter: TBD

References

@article{kvaerno2004singly, title={Singly diagonally implicit Runge–Kutta methods with an explicit first stage}, author={Kv{\ae}rn{\o}, Anne}, journal={BIT Numerical Mathematics}, volume={44}, number={3}, pages={489–502}, year={2004}, publisher={Springer}}

source

IMEX SDIRK

OrdinaryDiffEqSDIRK.KenCarp4Type
KenCarp4(; chunk_size = Val{0}(),
           autodiff = AutoForwardDiff(),
           standardtag = Val{true}(),
           concrete_jac = nothing,
           diff_type = Val{:forward}(),
           linsolve = nothing,
           precs = DEFAULT_PRECS,
           nlsolve = NLNewton(),
           smooth_est = true,
           extrapolant = :linear,
           controller = :PI,
           step_limiter! = trivial_limiter!)

SDIRK Method. An A-L stable stiffly-accurate 4th order ESDIRK method with splitting. Includes splitting capabilities. Recommended for medium tolerance stiff problems (>1e-8).

Keyword Arguments

  • autodiff: Uses ADTypes.jl to specify whether to use automatic differentiation via ForwardDiff.jl or finite differencing via FiniteDiff.jl. Defaults to AutoForwardDiff() for automatic differentiation, which by default uses chunksize = 0, and thus uses the internal ForwardDiff.jl algorithm for the choice. To use FiniteDiff.jl, the AutoFiniteDiff() ADType can be used, which has a keyword argument fdtype with default value Val{:forward}(), and alternatives Val{:central}() and Val{:complex}().
  • standardtag: Specifies whether to use package-specific tags instead of the ForwardDiff default function-specific tags. For more information, see this blog post. Defaults to Val{true}().
  • concrete_jac: Specifies whether a Jacobian should be constructed. Defaults to nothing, which means it will be chosen true/false depending on circumstances of the solver, such as whether a Krylov subspace method is used for linsolve.
  • linsolve: Any LinearSolve.jl compatible linear solver. For example, to use KLU.jl, specify KenCarp4(linsolve = KLUFactorization()). When nothing is passed, uses DefaultLinearSolver.
  • precs: Any LinearSolve.jl-compatible preconditioner can be used as a left or right preconditioner. Preconditioners are specified by the Pl,Pr = precs(W,du,u,p,t,newW,Plprev,Prprev,solverdata) function where the arguments are defined as:
    • W: the current Jacobian of the nonlinear system. Specified as either $I - \gamma J$ or $I/\gamma - J$ depending on the algorithm. This will commonly be a WOperator type defined by OrdinaryDiffEq.jl. It is a lazy representation of the operator. Users can construct the W-matrix on demand by calling convert(AbstractMatrix,W) to receive an AbstractMatrix matching the jac_prototype.
    • du: the current ODE derivative
    • u: the current ODE state
    • p: the ODE parameters
    • t: the current ODE time
    • newW: a Bool which specifies whether the W matrix has been updated since the last call to precs. It is recommended that this is checked to only update the preconditioner when newW == true.
    • Plprev: the previous Pl.
    • Prprev: the previous Pr.
    • solverdata: Optional extra data the solvers can give to the precs function. Solver-dependent and subject to change.
    The return is a tuple (Pl,Pr) of the LinearSolve.jl-compatible preconditioners. To specify one-sided preconditioning, simply return nothing for the preconditioner which is not used. Additionally, precs must supply the dispatch:
    Pl, Pr = precs(W, du, u, p, t, ::Nothing, ::Nothing, ::Nothing, solverdata)
    which is used in the solver setup phase to construct the integrator type with the preconditioners (Pl,Pr). The default is precs=DEFAULT_PRECS where the default preconditioner function is defined as:
    DEFAULT_PRECS(W, du, u, p, t, newW, Plprev, Prprev, solverdata) = nothing, nothing
  • nlsolve: TBD
    • smooth_est: TBD
  • extrapolant: TBD
  • controller: TBD
  • step_limiter: TBD

References

@book{kennedy2001additive, title={Additive Runge-Kutta schemes for convection-diffusion-reaction equations}, author={Kennedy, Christopher Alan}, year={2001}, publisher={National Aeronautics and Space Administration, Langley Research Center}}

source
OrdinaryDiffEqSDIRK.KenCarp47Type
KenCarp47(; chunk_size = Val{0}(),
            autodiff = AutoForwardDiff(),
            standardtag = Val{true}(),
            concrete_jac = nothing,
            diff_type = Val{:forward}(),
            linsolve = nothing,
            precs = DEFAULT_PRECS,
            nlsolve = NLNewton(),
            smooth_est = true,
            extrapolant = :linear,
            controller = :PI)

SDIRK Method. An A-L stable stiffly-accurate 4th order seven-stage ESDIRK method with splitting.

Keyword Arguments

  • autodiff: Uses ADTypes.jl to specify whether to use automatic differentiation via ForwardDiff.jl or finite differencing via FiniteDiff.jl. Defaults to AutoForwardDiff() for automatic differentiation, which by default uses chunksize = 0, and thus uses the internal ForwardDiff.jl algorithm for the choice. To use FiniteDiff.jl, the AutoFiniteDiff() ADType can be used, which has a keyword argument fdtype with default value Val{:forward}(), and alternatives Val{:central}() and Val{:complex}().
  • standardtag: Specifies whether to use package-specific tags instead of the ForwardDiff default function-specific tags. For more information, see this blog post. Defaults to Val{true}().
  • concrete_jac: Specifies whether a Jacobian should be constructed. Defaults to nothing, which means it will be chosen true/false depending on circumstances of the solver, such as whether a Krylov subspace method is used for linsolve.
  • linsolve: Any LinearSolve.jl compatible linear solver. For example, to use KLU.jl, specify KenCarp47(linsolve = KLUFactorization()). When nothing is passed, uses DefaultLinearSolver.
  • precs: Any LinearSolve.jl-compatible preconditioner can be used as a left or right preconditioner. Preconditioners are specified by the Pl,Pr = precs(W,du,u,p,t,newW,Plprev,Prprev,solverdata) function where the arguments are defined as:
    • W: the current Jacobian of the nonlinear system. Specified as either $I - \gamma J$ or $I/\gamma - J$ depending on the algorithm. This will commonly be a WOperator type defined by OrdinaryDiffEq.jl. It is a lazy representation of the operator. Users can construct the W-matrix on demand by calling convert(AbstractMatrix,W) to receive an AbstractMatrix matching the jac_prototype.
    • du: the current ODE derivative
    • u: the current ODE state
    • p: the ODE parameters
    • t: the current ODE time
    • newW: a Bool which specifies whether the W matrix has been updated since the last call to precs. It is recommended that this is checked to only update the preconditioner when newW == true.
    • Plprev: the previous Pl.
    • Prprev: the previous Pr.
    • solverdata: Optional extra data the solvers can give to the precs function. Solver-dependent and subject to change.
    The return is a tuple (Pl,Pr) of the LinearSolve.jl-compatible preconditioners. To specify one-sided preconditioning, simply return nothing for the preconditioner which is not used. Additionally, precs must supply the dispatch:
    Pl, Pr = precs(W, du, u, p, t, ::Nothing, ::Nothing, ::Nothing, solverdata)
    which is used in the solver setup phase to construct the integrator type with the preconditioners (Pl,Pr). The default is precs=DEFAULT_PRECS where the default preconditioner function is defined as:
    DEFAULT_PRECS(W, du, u, p, t, newW, Plprev, Prprev, solverdata) = nothing, nothing
  • nlsolve: TBD
    • smooth_est: TBD
  • extrapolant: TBD
  • controller: TBD

References

@article{kennedy2019higher, title={Higher-order additive Runge–Kutta schemes for ordinary differential equations}, author={Kennedy, Christopher A and Carpenter, Mark H}, journal={Applied Numerical Mathematics}, volume={136}, pages={183–205}, year={2019}, publisher={Elsevier}}

source
OrdinaryDiffEqSDIRK.KenCarp5Type
KenCarp5(; chunk_size = Val{0}(),
           autodiff = AutoForwardDiff(),
           standardtag = Val{true}(),
           concrete_jac = nothing,
           diff_type = Val{:forward}(),
           linsolve = nothing,
           precs = DEFAULT_PRECS,
           nlsolve = NLNewton(),
           smooth_est = true,
           extrapolant = :linear,
           controller = :PI,
           step_limiter! = trivial_limiter!)

SDIRK Method. An A-L stable stiffly-accurate 5th order ESDIRK method with splitting.

Keyword Arguments

  • autodiff: Uses ADTypes.jl to specify whether to use automatic differentiation via ForwardDiff.jl or finite differencing via FiniteDiff.jl. Defaults to AutoForwardDiff() for automatic differentiation, which by default uses chunksize = 0, and thus uses the internal ForwardDiff.jl algorithm for the choice. To use FiniteDiff.jl, the AutoFiniteDiff() ADType can be used, which has a keyword argument fdtype with default value Val{:forward}(), and alternatives Val{:central}() and Val{:complex}().
  • standardtag: Specifies whether to use package-specific tags instead of the ForwardDiff default function-specific tags. For more information, see this blog post. Defaults to Val{true}().
  • concrete_jac: Specifies whether a Jacobian should be constructed. Defaults to nothing, which means it will be chosen true/false depending on circumstances of the solver, such as whether a Krylov subspace method is used for linsolve.
  • linsolve: Any LinearSolve.jl compatible linear solver. For example, to use KLU.jl, specify KenCarp5(linsolve = KLUFactorization()). When nothing is passed, uses DefaultLinearSolver.
  • precs: Any LinearSolve.jl-compatible preconditioner can be used as a left or right preconditioner. Preconditioners are specified by the Pl,Pr = precs(W,du,u,p,t,newW,Plprev,Prprev,solverdata) function where the arguments are defined as:
    • W: the current Jacobian of the nonlinear system. Specified as either $I - \gamma J$ or $I/\gamma - J$ depending on the algorithm. This will commonly be a WOperator type defined by OrdinaryDiffEq.jl. It is a lazy representation of the operator. Users can construct the W-matrix on demand by calling convert(AbstractMatrix,W) to receive an AbstractMatrix matching the jac_prototype.
    • du: the current ODE derivative
    • u: the current ODE state
    • p: the ODE parameters
    • t: the current ODE time
    • newW: a Bool which specifies whether the W matrix has been updated since the last call to precs. It is recommended that this is checked to only update the preconditioner when newW == true.
    • Plprev: the previous Pl.
    • Prprev: the previous Pr.
    • solverdata: Optional extra data the solvers can give to the precs function. Solver-dependent and subject to change.
    The return is a tuple (Pl,Pr) of the LinearSolve.jl-compatible preconditioners. To specify one-sided preconditioning, simply return nothing for the preconditioner which is not used. Additionally, precs must supply the dispatch:
    Pl, Pr = precs(W, du, u, p, t, ::Nothing, ::Nothing, ::Nothing, solverdata)
    which is used in the solver setup phase to construct the integrator type with the preconditioners (Pl,Pr). The default is precs=DEFAULT_PRECS where the default preconditioner function is defined as:
    DEFAULT_PRECS(W, du, u, p, t, newW, Plprev, Prprev, solverdata) = nothing, nothing
  • nlsolve: TBD
    • smooth_est: TBD
  • extrapolant: TBD
  • controller: TBD
  • step_limiter: TBD

References

@book{kennedy2001additive, title={Additive Runge-Kutta schemes for convection-diffusion-reaction equations}, author={Kennedy, Christopher Alan}, year={2001}, publisher={National Aeronautics and Space Administration, Langley Research Center}}

source
OrdinaryDiffEqSDIRK.KenCarp58Type
KenCarp58(; chunk_size = Val{0}(),
            autodiff = AutoForwardDiff(),
            standardtag = Val{true}(),
            concrete_jac = nothing,
            diff_type = Val{:forward}(),
            linsolve = nothing,
            precs = DEFAULT_PRECS,
            nlsolve = NLNewton(),
            smooth_est = true,
            extrapolant = :linear,
            controller = :PI)

SDIRK Method. An A-L stable stiffly-accurate 5th order eight-stage ESDIRK method with splitting.

Keyword Arguments

  • autodiff: Uses ADTypes.jl to specify whether to use automatic differentiation via ForwardDiff.jl or finite differencing via FiniteDiff.jl. Defaults to AutoForwardDiff() for automatic differentiation, which by default uses chunksize = 0, and thus uses the internal ForwardDiff.jl algorithm for the choice. To use FiniteDiff.jl, the AutoFiniteDiff() ADType can be used, which has a keyword argument fdtype with default value Val{:forward}(), and alternatives Val{:central}() and Val{:complex}().
  • standardtag: Specifies whether to use package-specific tags instead of the ForwardDiff default function-specific tags. For more information, see this blog post. Defaults to Val{true}().
  • concrete_jac: Specifies whether a Jacobian should be constructed. Defaults to nothing, which means it will be chosen true/false depending on circumstances of the solver, such as whether a Krylov subspace method is used for linsolve.
  • linsolve: Any LinearSolve.jl compatible linear solver. For example, to use KLU.jl, specify KenCarp58(linsolve = KLUFactorization()). When nothing is passed, uses DefaultLinearSolver.
  • precs: Any LinearSolve.jl-compatible preconditioner can be used as a left or right preconditioner. Preconditioners are specified by the Pl,Pr = precs(W,du,u,p,t,newW,Plprev,Prprev,solverdata) function where the arguments are defined as:
    • W: the current Jacobian of the nonlinear system. Specified as either $I - \gamma J$ or $I/\gamma - J$ depending on the algorithm. This will commonly be a WOperator type defined by OrdinaryDiffEq.jl. It is a lazy representation of the operator. Users can construct the W-matrix on demand by calling convert(AbstractMatrix,W) to receive an AbstractMatrix matching the jac_prototype.
    • du: the current ODE derivative
    • u: the current ODE state
    • p: the ODE parameters
    • t: the current ODE time
    • newW: a Bool which specifies whether the W matrix has been updated since the last call to precs. It is recommended that this is checked to only update the preconditioner when newW == true.
    • Plprev: the previous Pl.
    • Prprev: the previous Pr.
    • solverdata: Optional extra data the solvers can give to the precs function. Solver-dependent and subject to change.
    The return is a tuple (Pl,Pr) of the LinearSolve.jl-compatible preconditioners. To specify one-sided preconditioning, simply return nothing for the preconditioner which is not used. Additionally, precs must supply the dispatch:
    Pl, Pr = precs(W, du, u, p, t, ::Nothing, ::Nothing, ::Nothing, solverdata)
    which is used in the solver setup phase to construct the integrator type with the preconditioners (Pl,Pr). The default is precs=DEFAULT_PRECS where the default preconditioner function is defined as:
    DEFAULT_PRECS(W, du, u, p, t, newW, Plprev, Prprev, solverdata) = nothing, nothing
  • nlsolve: TBD
    • smooth_est: TBD
  • extrapolant: TBD
  • controller: TBD

References

@article{kennedy2019higher, title={Higher-order additive Runge–Kutta schemes for ordinary differential equations}, author={Kennedy, Christopher A and Carpenter, Mark H}, journal={Applied Numerical Mathematics}, volume={136}, pages={183–205}, year={2019}, publisher={Elsevier}}

source
OrdinaryDiffEqSDIRK.ESDIRK54I8L2SAType
ESDIRK54I8L2SA(; chunk_size = Val{0}(),
                 autodiff = AutoForwardDiff(),
                 standardtag = Val{true}(),
                 concrete_jac = nothing,
                 diff_type = Val{:forward}(),
                 linsolve = nothing,
                 precs = DEFAULT_PRECS,
                 nlsolve = NLNewton(),
                 extrapolant = :linear,
                 controller = :PI)

SDIRK Method. Optimized ESDIRK tableaus. Updates of the original KenCarp tableau expected to achieve lower error for the same steps in theory, but are still being fully evaluated in context.

Keyword Arguments

  • autodiff: Uses ADTypes.jl to specify whether to use automatic differentiation via ForwardDiff.jl or finite differencing via FiniteDiff.jl. Defaults to AutoForwardDiff() for automatic differentiation, which by default uses chunksize = 0, and thus uses the internal ForwardDiff.jl algorithm for the choice. To use FiniteDiff.jl, the AutoFiniteDiff() ADType can be used, which has a keyword argument fdtype with default value Val{:forward}(), and alternatives Val{:central}() and Val{:complex}().
  • standardtag: Specifies whether to use package-specific tags instead of the ForwardDiff default function-specific tags. For more information, see this blog post. Defaults to Val{true}().
  • concrete_jac: Specifies whether a Jacobian should be constructed. Defaults to nothing, which means it will be chosen true/false depending on circumstances of the solver, such as whether a Krylov subspace method is used for linsolve.
  • linsolve: Any LinearSolve.jl compatible linear solver. For example, to use KLU.jl, specify ESDIRK54I8L2SA(linsolve = KLUFactorization()). When nothing is passed, uses DefaultLinearSolver.
  • precs: Any LinearSolve.jl-compatible preconditioner can be used as a left or right preconditioner. Preconditioners are specified by the Pl,Pr = precs(W,du,u,p,t,newW,Plprev,Prprev,solverdata) function where the arguments are defined as:
    • W: the current Jacobian of the nonlinear system. Specified as either $I - \gamma J$ or $I/\gamma - J$ depending on the algorithm. This will commonly be a WOperator type defined by OrdinaryDiffEq.jl. It is a lazy representation of the operator. Users can construct the W-matrix on demand by calling convert(AbstractMatrix,W) to receive an AbstractMatrix matching the jac_prototype.
    • du: the current ODE derivative
    • u: the current ODE state
    • p: the ODE parameters
    • t: the current ODE time
    • newW: a Bool which specifies whether the W matrix has been updated since the last call to precs. It is recommended that this is checked to only update the preconditioner when newW == true.
    • Plprev: the previous Pl.
    • Prprev: the previous Pr.
    • solverdata: Optional extra data the solvers can give to the precs function. Solver-dependent and subject to change.
    The return is a tuple (Pl,Pr) of the LinearSolve.jl-compatible preconditioners. To specify one-sided preconditioning, simply return nothing for the preconditioner which is not used. Additionally, precs must supply the dispatch:
    Pl, Pr = precs(W, du, u, p, t, ::Nothing, ::Nothing, ::Nothing, solverdata)
    which is used in the solver setup phase to construct the integrator type with the preconditioners (Pl,Pr). The default is precs=DEFAULT_PRECS where the default preconditioner function is defined as:
    DEFAULT_PRECS(W, du, u, p, t, newW, Plprev, Prprev, solverdata) = nothing, nothing
  • nlsolve: TBD
    • extrapolant: TBD
  • controller: TBD

References

@article{Kennedy2019DiagonallyIR, title={Diagonally implicit Runge–Kutta methods for stiff ODEs}, author={Christopher A. Kennedy and Mark H. Carpenter}, journal={Applied Numerical Mathematics}, year={2019}, volume={146}, pages={221-244} }

source
OrdinaryDiffEqSDIRK.ESDIRK436L2SA2Type
ESDIRK436L2SA2(; chunk_size = Val{0}(),
                 autodiff = AutoForwardDiff(),
                 standardtag = Val{true}(),
                 concrete_jac = nothing,
                 diff_type = Val{:forward}(),
                 linsolve = nothing,
                 precs = DEFAULT_PRECS,
                 nlsolve = NLNewton(),
                 extrapolant = :linear,
                 controller = :PI)

SDIRK Method. Optimized ESDIRK tableaus. Updates of the original KenCarp tableau expected to achieve lower error for the same steps in theory, but are still being fully evaluated in context.

Keyword Arguments

  • autodiff: Uses ADTypes.jl to specify whether to use automatic differentiation via ForwardDiff.jl or finite differencing via FiniteDiff.jl. Defaults to AutoForwardDiff() for automatic differentiation, which by default uses chunksize = 0, and thus uses the internal ForwardDiff.jl algorithm for the choice. To use FiniteDiff.jl, the AutoFiniteDiff() ADType can be used, which has a keyword argument fdtype with default value Val{:forward}(), and alternatives Val{:central}() and Val{:complex}().
  • standardtag: Specifies whether to use package-specific tags instead of the ForwardDiff default function-specific tags. For more information, see this blog post. Defaults to Val{true}().
  • concrete_jac: Specifies whether a Jacobian should be constructed. Defaults to nothing, which means it will be chosen true/false depending on circumstances of the solver, such as whether a Krylov subspace method is used for linsolve.
  • linsolve: Any LinearSolve.jl compatible linear solver. For example, to use KLU.jl, specify ESDIRK436L2SA2(linsolve = KLUFactorization()). When nothing is passed, uses DefaultLinearSolver.
  • precs: Any LinearSolve.jl-compatible preconditioner can be used as a left or right preconditioner. Preconditioners are specified by the Pl,Pr = precs(W,du,u,p,t,newW,Plprev,Prprev,solverdata) function where the arguments are defined as:
    • W: the current Jacobian of the nonlinear system. Specified as either $I - \gamma J$ or $I/\gamma - J$ depending on the algorithm. This will commonly be a WOperator type defined by OrdinaryDiffEq.jl. It is a lazy representation of the operator. Users can construct the W-matrix on demand by calling convert(AbstractMatrix,W) to receive an AbstractMatrix matching the jac_prototype.
    • du: the current ODE derivative
    • u: the current ODE state
    • p: the ODE parameters
    • t: the current ODE time
    • newW: a Bool which specifies whether the W matrix has been updated since the last call to precs. It is recommended that this is checked to only update the preconditioner when newW == true.
    • Plprev: the previous Pl.
    • Prprev: the previous Pr.
    • solverdata: Optional extra data the solvers can give to the precs function. Solver-dependent and subject to change.
    The return is a tuple (Pl,Pr) of the LinearSolve.jl-compatible preconditioners. To specify one-sided preconditioning, simply return nothing for the preconditioner which is not used. Additionally, precs must supply the dispatch:
    Pl, Pr = precs(W, du, u, p, t, ::Nothing, ::Nothing, ::Nothing, solverdata)
    which is used in the solver setup phase to construct the integrator type with the preconditioners (Pl,Pr). The default is precs=DEFAULT_PRECS where the default preconditioner function is defined as:
    DEFAULT_PRECS(W, du, u, p, t, newW, Plprev, Prprev, solverdata) = nothing, nothing
  • nlsolve: TBD
    • extrapolant: TBD
  • controller: TBD

References

@article{Kennedy2019DiagonallyIR, title={Diagonally implicit Runge–Kutta methods for stiff ODEs}, author={Christopher A. Kennedy and Mark H. Carpenter}, journal={Applied Numerical Mathematics}, year={2019}, volume={146}, pages={221-244} }

source
OrdinaryDiffEqSDIRK.ESDIRK437L2SAType
ESDIRK437L2SA(; chunk_size = Val{0}(),
                autodiff = AutoForwardDiff(),
                standardtag = Val{true}(),
                concrete_jac = nothing,
                diff_type = Val{:forward}(),
                linsolve = nothing,
                precs = DEFAULT_PRECS,
                nlsolve = NLNewton(),
                extrapolant = :linear,
                controller = :PI)

SDIRK Method. Optimized ESDIRK tableaus. Updates of the original KenCarp tableau expected to achieve lower error for the same steps in theory, but are still being fully evaluated in context.

Keyword Arguments

  • autodiff: Uses ADTypes.jl to specify whether to use automatic differentiation via ForwardDiff.jl or finite differencing via FiniteDiff.jl. Defaults to AutoForwardDiff() for automatic differentiation, which by default uses chunksize = 0, and thus uses the internal ForwardDiff.jl algorithm for the choice. To use FiniteDiff.jl, the AutoFiniteDiff() ADType can be used, which has a keyword argument fdtype with default value Val{:forward}(), and alternatives Val{:central}() and Val{:complex}().
  • standardtag: Specifies whether to use package-specific tags instead of the ForwardDiff default function-specific tags. For more information, see this blog post. Defaults to Val{true}().
  • concrete_jac: Specifies whether a Jacobian should be constructed. Defaults to nothing, which means it will be chosen true/false depending on circumstances of the solver, such as whether a Krylov subspace method is used for linsolve.
  • linsolve: Any LinearSolve.jl compatible linear solver. For example, to use KLU.jl, specify ESDIRK437L2SA(linsolve = KLUFactorization()). When nothing is passed, uses DefaultLinearSolver.
  • precs: Any LinearSolve.jl-compatible preconditioner can be used as a left or right preconditioner. Preconditioners are specified by the Pl,Pr = precs(W,du,u,p,t,newW,Plprev,Prprev,solverdata) function where the arguments are defined as:
    • W: the current Jacobian of the nonlinear system. Specified as either $I - \gamma J$ or $I/\gamma - J$ depending on the algorithm. This will commonly be a WOperator type defined by OrdinaryDiffEq.jl. It is a lazy representation of the operator. Users can construct the W-matrix on demand by calling convert(AbstractMatrix,W) to receive an AbstractMatrix matching the jac_prototype.
    • du: the current ODE derivative
    • u: the current ODE state
    • p: the ODE parameters
    • t: the current ODE time
    • newW: a Bool which specifies whether the W matrix has been updated since the last call to precs. It is recommended that this is checked to only update the preconditioner when newW == true.
    • Plprev: the previous Pl.
    • Prprev: the previous Pr.
    • solverdata: Optional extra data the solvers can give to the precs function. Solver-dependent and subject to change.
    The return is a tuple (Pl,Pr) of the LinearSolve.jl-compatible preconditioners. To specify one-sided preconditioning, simply return nothing for the preconditioner which is not used. Additionally, precs must supply the dispatch:
    Pl, Pr = precs(W, du, u, p, t, ::Nothing, ::Nothing, ::Nothing, solverdata)
    which is used in the solver setup phase to construct the integrator type with the preconditioners (Pl,Pr). The default is precs=DEFAULT_PRECS where the default preconditioner function is defined as:
    DEFAULT_PRECS(W, du, u, p, t, newW, Plprev, Prprev, solverdata) = nothing, nothing
  • nlsolve: TBD
    • extrapolant: TBD
  • controller: TBD

References

@article{Kennedy2019DiagonallyIR, title={Diagonally implicit Runge–Kutta methods for stiff ODEs}, author={Christopher A. Kennedy and Mark H. Carpenter}, journal={Applied Numerical Mathematics}, year={2019}, volume={146}, pages={221-244} }

source
OrdinaryDiffEqSDIRK.ESDIRK547L2SA2Type
ESDIRK547L2SA2(; chunk_size = Val{0}(),
                 autodiff = AutoForwardDiff(),
                 standardtag = Val{true}(),
                 concrete_jac = nothing,
                 diff_type = Val{:forward}(),
                 linsolve = nothing,
                 precs = DEFAULT_PRECS,
                 nlsolve = NLNewton(),
                 extrapolant = :linear,
                 controller = :PI)

SDIRK Method. Optimized ESDIRK tableaus. Updates of the original KenCarp tableau expected to achieve lower error for the same steps in theory, but are still being fully evaluated in context.

Keyword Arguments

  • autodiff: Uses ADTypes.jl to specify whether to use automatic differentiation via ForwardDiff.jl or finite differencing via FiniteDiff.jl. Defaults to AutoForwardDiff() for automatic differentiation, which by default uses chunksize = 0, and thus uses the internal ForwardDiff.jl algorithm for the choice. To use FiniteDiff.jl, the AutoFiniteDiff() ADType can be used, which has a keyword argument fdtype with default value Val{:forward}(), and alternatives Val{:central}() and Val{:complex}().
  • standardtag: Specifies whether to use package-specific tags instead of the ForwardDiff default function-specific tags. For more information, see this blog post. Defaults to Val{true}().
  • concrete_jac: Specifies whether a Jacobian should be constructed. Defaults to nothing, which means it will be chosen true/false depending on circumstances of the solver, such as whether a Krylov subspace method is used for linsolve.
  • linsolve: Any LinearSolve.jl compatible linear solver. For example, to use KLU.jl, specify ESDIRK547L2SA2(linsolve = KLUFactorization()). When nothing is passed, uses DefaultLinearSolver.
  • precs: Any LinearSolve.jl-compatible preconditioner can be used as a left or right preconditioner. Preconditioners are specified by the Pl,Pr = precs(W,du,u,p,t,newW,Plprev,Prprev,solverdata) function where the arguments are defined as:
    • W: the current Jacobian of the nonlinear system. Specified as either $I - \gamma J$ or $I/\gamma - J$ depending on the algorithm. This will commonly be a WOperator type defined by OrdinaryDiffEq.jl. It is a lazy representation of the operator. Users can construct the W-matrix on demand by calling convert(AbstractMatrix,W) to receive an AbstractMatrix matching the jac_prototype.
    • du: the current ODE derivative
    • u: the current ODE state
    • p: the ODE parameters
    • t: the current ODE time
    • newW: a Bool which specifies whether the W matrix has been updated since the last call to precs. It is recommended that this is checked to only update the preconditioner when newW == true.
    • Plprev: the previous Pl.
    • Prprev: the previous Pr.
    • solverdata: Optional extra data the solvers can give to the precs function. Solver-dependent and subject to change.
    The return is a tuple (Pl,Pr) of the LinearSolve.jl-compatible preconditioners. To specify one-sided preconditioning, simply return nothing for the preconditioner which is not used. Additionally, precs must supply the dispatch:
    Pl, Pr = precs(W, du, u, p, t, ::Nothing, ::Nothing, ::Nothing, solverdata)
    which is used in the solver setup phase to construct the integrator type with the preconditioners (Pl,Pr). The default is precs=DEFAULT_PRECS where the default preconditioner function is defined as:
    DEFAULT_PRECS(W, du, u, p, t, newW, Plprev, Prprev, solverdata) = nothing, nothing
  • nlsolve: TBD
    • extrapolant: TBD
  • controller: TBD

References

@article{Kennedy2019DiagonallyIR, title={Diagonally implicit Runge–Kutta methods for stiff ODEs}, author={Christopher A. Kennedy and Mark H. Carpenter}, journal={Applied Numerical Mathematics}, year={2019}, volume={146}, pages={221-244} }

source
OrdinaryDiffEqSDIRK.ESDIRK659L2SAType
ESDIRK659L2SA(; chunk_size = Val{0}(),
                autodiff = AutoForwardDiff(),
                standardtag = Val{true}(),
                concrete_jac = nothing,
                diff_type = Val{:forward}(),
                linsolve = nothing,
                precs = DEFAULT_PRECS,
                nlsolve = NLNewton(),
                extrapolant = :linear,
                controller = :PI)

SDIRK Method. Optimized ESDIRK tableaus. Updates of the original KenCarp tableau expected to achieve lower error for the same steps in theory, but are still being fully evaluated in context. Currently has STABILITY ISSUES, causing it to fail the adaptive tests. Check issue https://github.com/SciML/OrdinaryDiffEq.jl/issues/1933 for more details.

Keyword Arguments

  • autodiff: Uses ADTypes.jl to specify whether to use automatic differentiation via ForwardDiff.jl or finite differencing via FiniteDiff.jl. Defaults to AutoForwardDiff() for automatic differentiation, which by default uses chunksize = 0, and thus uses the internal ForwardDiff.jl algorithm for the choice. To use FiniteDiff.jl, the AutoFiniteDiff() ADType can be used, which has a keyword argument fdtype with default value Val{:forward}(), and alternatives Val{:central}() and Val{:complex}().
  • standardtag: Specifies whether to use package-specific tags instead of the ForwardDiff default function-specific tags. For more information, see this blog post. Defaults to Val{true}().
  • concrete_jac: Specifies whether a Jacobian should be constructed. Defaults to nothing, which means it will be chosen true/false depending on circumstances of the solver, such as whether a Krylov subspace method is used for linsolve.
  • linsolve: Any LinearSolve.jl compatible linear solver. For example, to use KLU.jl, specify ESDIRK659L2SA(linsolve = KLUFactorization()). When nothing is passed, uses DefaultLinearSolver.
  • precs: Any LinearSolve.jl-compatible preconditioner can be used as a left or right preconditioner. Preconditioners are specified by the Pl,Pr = precs(W,du,u,p,t,newW,Plprev,Prprev,solverdata) function where the arguments are defined as:
    • W: the current Jacobian of the nonlinear system. Specified as either $I - \gamma J$ or $I/\gamma - J$ depending on the algorithm. This will commonly be a WOperator type defined by OrdinaryDiffEq.jl. It is a lazy representation of the operator. Users can construct the W-matrix on demand by calling convert(AbstractMatrix,W) to receive an AbstractMatrix matching the jac_prototype.
    • du: the current ODE derivative
    • u: the current ODE state
    • p: the ODE parameters
    • t: the current ODE time
    • newW: a Bool which specifies whether the W matrix has been updated since the last call to precs. It is recommended that this is checked to only update the preconditioner when newW == true.
    • Plprev: the previous Pl.
    • Prprev: the previous Pr.
    • solverdata: Optional extra data the solvers can give to the precs function. Solver-dependent and subject to change.
    The return is a tuple (Pl,Pr) of the LinearSolve.jl-compatible preconditioners. To specify one-sided preconditioning, simply return nothing for the preconditioner which is not used. Additionally, precs must supply the dispatch:
    Pl, Pr = precs(W, du, u, p, t, ::Nothing, ::Nothing, ::Nothing, solverdata)
    which is used in the solver setup phase to construct the integrator type with the preconditioners (Pl,Pr). The default is precs=DEFAULT_PRECS where the default preconditioner function is defined as:
    DEFAULT_PRECS(W, du, u, p, t, newW, Plprev, Prprev, solverdata) = nothing, nothing
  • nlsolve: TBD
    • extrapolant: TBD
  • controller: TBD

References

@article{Kennedy2019DiagonallyIR, title={Diagonally implicit Runge–Kutta methods for stiff ODEs}, author={Christopher A. Kennedy and Mark H. Carpenter}, journal={Applied Numerical Mathematics}, year={2019}, volume={146}, pages={221-244} }

source