OrdinaryDiffEqRosenbrock
Rosenbrock methods for mass matrix differential-algebraic equations (DAEs) and stiff ODEs with singular mass matrices. These methods provide efficient integration for moderately stiff systems with algebraic constraints, offering excellent performance for small to medium-sized DAE problems.
Key Properties
Mass matrix Rosenbrock methods provide:
- DAE capability for index-1 differential-algebraic equations
- W-method efficiency using approximate Jacobians for computational savings
- Mass matrix support for singular and non-diagonal mass matrices
- Moderate to high order accuracy (2nd to 6th order available)
- Good stability properties with stiffly accurate behavior
- Embedded error estimation for adaptive timestepping
When to Use Mass Matrix Rosenbrock Methods
These methods are recommended for:
- Index-1 DAE systems with moderate stiffness
- Small to medium constrained systems (< 1000 equations)
- Semi-explicit DAEs arising from discretized PDEs
- Problems requiring good accuracy with moderate computational cost
- DAEs with moderate nonlinearity where W-methods are efficient
- Electrical circuits and mechanical systems with constraints
In order to use OrdinaryDiffEqRosenbrock with DAEs that require a non-trivial consistent initialization, a nonlinear solver is required and thus using OrdinaryDiffEqNonlinearSolve
is required or you must pass an initializealg
with a valid nlsolve
choice.
Mathematical Background
Mass matrix DAEs have the form: M du/dt = f(u,t)
Rosenbrock methods linearize around the current solution and solve linear systems of the form: (M/γh - J) k_i = ...
where J is the Jacobian of f and γ is a method parameter.
Solver Selection Guide
Recommended Methods by Tolerance
- High tolerances (>1e-2):
Rosenbrock23
- efficient low-order method - Medium tolerances (1e-8 to 1e-2):
Rodas5P
- most efficient choice, orRodas4P
for higher reliability - Low tolerances (<1e-8):
Rodas5Pe
or higher-order alternatives
Method families
Rodas5P
: Recommended - Most efficient 5th-order method for general useRodas4P
: More reliable 4th-order alternativeRosenbrock23
: Good for high tolerance problemsRodas5
: Standard 5th-order method without embedded pair optimization
Performance Guidelines
When mass matrix Rosenbrock methods excel
- Small to medium DAE systems (< 1000 equations)
- Moderately stiff problems where full BDF methods are overkill
- Problems with efficient Jacobian computation or finite difference approximation
- Index-1 DAEs with well-conditioned mass matrices
- Semi-explicit index-1 problems from spatial discretizations
System size considerations
- Small systems (< 100): Rosenbrock methods often outperform multistep methods
- Medium systems (100-1000): Good performance with proper linear algebra
- Large systems (> 1000): Consider BDF methods instead
Important DAE Considerations
Initial conditions
- Must be consistent with algebraic constraints
- Consistent initialization may require nonlinear solver
- Index-1 assumption for reliable performance
Mass matrix requirements
- Index-1 DAE structure for optimal performance
- Non-singular leading submatrix for differential variables
- Well-conditioned constraint equations
Alternative Approaches
Consider these alternatives:
- Mass matrix BDF methods for larger or highly stiff DAE systems
- Implicit Runge-Kutta methods for higher accuracy requirements
- Standard Rosenbrock methods for regular ODEs without constraints
- IMEX methods if natural explicit/implicit splitting exists
Example Usage
using LinearAlgebra: Diagonal
function rober(du, u, p, t)
y₁, y₂, y₃ = u
k₁, k₂, k₃ = p
du[1] = -k₁ * y₁ + k₃ * y₂ * y₃
du[2] = k₁ * y₁ - k₃ * y₂ * y₃ - k₂ * y₂^2
du[3] = y₁ + y₂ + y₃ - 1
nothing
end
M = Diagonal([1.0, 1.0, 0]) # Singular mass matrix
f = ODEFunction(rober, mass_matrix = M)
prob_mm = ODEProblem(f, [1.0, 0.0, 0.0], (0.0, 1e5), (0.04, 3e7, 1e4))
sol = solve(prob_mm, Rodas5(), reltol = 1e-8, abstol = 1e-8)
Installation
To be able to access the solvers in OrdinaryDiffEqRosenbrock
, you must first install them use the Julia package manager:
using Pkg
Pkg.add("OrdinaryDiffEqRosenbrock")
This will only install the solvers listed at the bottom of this page. If you want to explore other solvers for your problem, you will need to install some of the other libraries listed in the navigation bar on the left.
Example usage
using OrdinaryDiffEqRosenbrock
function lorenz!(du, u, p, t)
du[1] = 10.0 * (u[2] - u[1])
du[2] = u[1] * (28.0 - u[3]) - u[2]
du[3] = u[1] * u[2] - (8 / 3) * u[3]
end
u0 = [1.0; 0.0; 0.0]
tspan = (0.0, 100.0)
prob = ODEProblem(lorenz!, u0, tspan)
sol = solve(prob, Rodas5P())
Full list of solvers
OrdinaryDiffEqRosenbrock.Rosenbrock23
— TypeRosenbrock23(; chunk_size = Val{0}(),
standardtag = Val{true}(),
autodiff = AutoForwardDiff(),
concrete_jac = nothing,
diff_type = Val{:forward}(),
linsolve = nothing,
precs = DEFAULT_PRECS,
step_limiter! = OrdinaryDiffEq.trivial_limiter!)
Rosenbrock-Wanner-W(olfbrandt) Method. An Order 2/3 L-Stable Rosenbrock-W method which is good for very stiff equations with oscillations at low tolerances. 2nd order stiff-aware interpolation.
Keyword Arguments
standardtag
: Specifies whether to use package-specific tags instead of the ForwardDiff default function-specific tags. For more information, see this blog post. Defaults toVal{true}()
.autodiff
: Uses ADTypes.jl to specify whether to use automatic differentiation via ForwardDiff.jl or finite differencing via FiniteDiff.jl. Defaults toAutoForwardDiff()
for automatic differentiation, which by default useschunksize = 0
, and thus uses the internal ForwardDiff.jl algorithm for the choice. To useFiniteDiff.jl
, theAutoFiniteDiff()
ADType can be used, which has a keyword argumentfdtype
with default valueVal{:forward}()
, and alternativesVal{:central}()
andVal{:complex}()
.concrete_jac
: Specifies whether a Jacobian should be constructed. Defaults tonothing
, which means it will be chosen true/false depending on circumstances of the solver, such as whether a Krylov subspace method is used forlinsolve
.linsolve
: Any LinearSolve.jl compatible linear solver. For example, to use KLU.jl, specifyRosenbrock23(linsolve = KLUFactorization()
). Whennothing
is passed, usesDefaultLinearSolver
.precs
: Any LinearSolve.jl-compatible preconditioner can be used as a left or right preconditioner. Preconditioners are specified by thePl,Pr = precs(W,du,u,p,t,newW,Plprev,Prprev,solverdata)
function where the arguments are defined as:W
: the current Jacobian of the nonlinear system. Specified as either $I - \gamma J$ or $I/\gamma - J$ depending on the algorithm. This will commonly be aWOperator
type defined by OrdinaryDiffEq.jl. It is a lazy representation of the operator. Users can construct the W-matrix on demand by callingconvert(AbstractMatrix,W)
to receive anAbstractMatrix
matching thejac_prototype
.du
: the current ODE derivativeu
: the current ODE statep
: the ODE parameterst
: the current ODE timenewW
: aBool
which specifies whether theW
matrix has been updated since the last call toprecs
. It is recommended that this is checked to only update the preconditioner whennewW == true
.Plprev
: the previousPl
.Prprev
: the previousPr
.solverdata
: Optional extra data the solvers can give to theprecs
function. Solver-dependent and subject to change.
(Pl,Pr)
of the LinearSolve.jl-compatible preconditioners. To specify one-sided preconditioning, simply returnnothing
for the preconditioner which is not used. Additionally,precs
must supply the dispatch:
which is used in the solver setup phase to construct the integrator type with the preconditionersPl, Pr = precs(W, du, u, p, t, ::Nothing, ::Nothing, ::Nothing, solverdata)
(Pl,Pr)
. The default isprecs=DEFAULT_PRECS
where the default preconditioner function is defined as:DEFAULT_PRECS(W, du, u, p, t, newW, Plprev, Prprev, solverdata) = nothing, nothing
step_limiter!
: function of the formlimiter!(u, integrator, p, t)
References
- Shampine L.F. and Reichelt M., (1997) The MATLAB ODE Suite, SIAM Journal of
Scientific Computing, 18 (1), pp. 1-22.
OrdinaryDiffEqRosenbrock.Rosenbrock32
— TypeRosenbrock32(; chunk_size = Val{0}(),
standardtag = Val{true}(),
autodiff = AutoForwardDiff(),
concrete_jac = nothing,
diff_type = Val{:forward}(),
linsolve = nothing,
precs = DEFAULT_PRECS,
step_limiter! = OrdinaryDiffEq.trivial_limiter!)
Rosenbrock-Wanner-W(olfbrandt) Method. An Order 3/2 A-Stable Rosenbrock-W method which is good for mildly stiff equations without oscillations at low tolerances. Note that this method is prone to instability in the presence of oscillations, so use with caution. 2nd order stiff-aware interpolation.
Keyword Arguments
standardtag
: Specifies whether to use package-specific tags instead of the ForwardDiff default function-specific tags. For more information, see this blog post. Defaults toVal{true}()
.autodiff
: Uses ADTypes.jl to specify whether to use automatic differentiation via ForwardDiff.jl or finite differencing via FiniteDiff.jl. Defaults toAutoForwardDiff()
for automatic differentiation, which by default useschunksize = 0
, and thus uses the internal ForwardDiff.jl algorithm for the choice. To useFiniteDiff.jl
, theAutoFiniteDiff()
ADType can be used, which has a keyword argumentfdtype
with default valueVal{:forward}()
, and alternativesVal{:central}()
andVal{:complex}()
.concrete_jac
: Specifies whether a Jacobian should be constructed. Defaults tonothing
, which means it will be chosen true/false depending on circumstances of the solver, such as whether a Krylov subspace method is used forlinsolve
.linsolve
: Any LinearSolve.jl compatible linear solver. For example, to use KLU.jl, specifyRosenbrock32(linsolve = KLUFactorization()
). Whennothing
is passed, usesDefaultLinearSolver
.precs
: Any LinearSolve.jl-compatible preconditioner can be used as a left or right preconditioner. Preconditioners are specified by thePl,Pr = precs(W,du,u,p,t,newW,Plprev,Prprev,solverdata)
function where the arguments are defined as:W
: the current Jacobian of the nonlinear system. Specified as either $I - \gamma J$ or $I/\gamma - J$ depending on the algorithm. This will commonly be aWOperator
type defined by OrdinaryDiffEq.jl. It is a lazy representation of the operator. Users can construct the W-matrix on demand by callingconvert(AbstractMatrix,W)
to receive anAbstractMatrix
matching thejac_prototype
.du
: the current ODE derivativeu
: the current ODE statep
: the ODE parameterst
: the current ODE timenewW
: aBool
which specifies whether theW
matrix has been updated since the last call toprecs
. It is recommended that this is checked to only update the preconditioner whennewW == true
.Plprev
: the previousPl
.Prprev
: the previousPr
.solverdata
: Optional extra data the solvers can give to theprecs
function. Solver-dependent and subject to change.
(Pl,Pr)
of the LinearSolve.jl-compatible preconditioners. To specify one-sided preconditioning, simply returnnothing
for the preconditioner which is not used. Additionally,precs
must supply the dispatch:
which is used in the solver setup phase to construct the integrator type with the preconditionersPl, Pr = precs(W, du, u, p, t, ::Nothing, ::Nothing, ::Nothing, solverdata)
(Pl,Pr)
. The default isprecs=DEFAULT_PRECS
where the default preconditioner function is defined as:DEFAULT_PRECS(W, du, u, p, t, newW, Plprev, Prprev, solverdata) = nothing, nothing
step_limiter!
: function of the formlimiter!(u, integrator, p, t)
References
- Shampine L.F. and Reichelt M., (1997) The MATLAB ODE Suite, SIAM Journal of
Scientific Computing, 18 (1), pp. 1-22.
OrdinaryDiffEqRosenbrock.ROS3P
— TypeROS3P(; - `standardtag`: Specifies whether to use package-specific tags instead of the
ForwardDiff default function-specific tags. For more information, see
[this blog post](https://www.stochasticlifestyle.com/improved-forwarddiff-jl-stacktraces-with-package-tags/).
Defaults to `Val{true}()`.
- `autodiff`: Uses [ADTypes.jl](https://sciml.github.io/ADTypes.jl/stable/)
to specify whether to use automatic differentiation via
[ForwardDiff.jl](https://github.com/JuliaDiff/ForwardDiff.jl) or finite
differencing via [FiniteDiff.jl](https://github.com/JuliaDiff/FiniteDiff.jl).
Defaults to `AutoForwardDiff()` for automatic differentiation, which by default uses
`chunksize = 0`, and thus uses the internal ForwardDiff.jl algorithm for the choice.
To use `FiniteDiff.jl`, the `AutoFiniteDiff()` ADType can be used, which has a keyword argument
`fdtype` with default value `Val{:forward}()`, and alternatives `Val{:central}()` and `Val{:complex}()`.
- `concrete_jac`: Specifies whether a Jacobian should be constructed. Defaults to
`nothing`, which means it will be chosen true/false depending on circumstances
of the solver, such as whether a Krylov subspace method is used for `linsolve`.
- `linsolve`: Any [LinearSolve.jl](https://github.com/SciML/LinearSolve.jl) compatible linear solver.
For example, to use [KLU.jl](https://github.com/JuliaSparse/KLU.jl), specify
`ROS3P(linsolve = KLUFactorization()`).
When `nothing` is passed, uses `DefaultLinearSolver`.
- `precs`: Any [LinearSolve.jl-compatible preconditioner](https://docs.sciml.ai/LinearSolve/stable/basics/Preconditioners/)
can be used as a left or right preconditioner.
Preconditioners are specified by the `Pl,Pr = precs(W,du,u,p,t,newW,Plprev,Prprev,solverdata)`
function where the arguments are defined as:
- `W`: the current Jacobian of the nonlinear system. Specified as either
``I - \gamma J`` or ``I/\gamma - J`` depending on the algorithm. This will
commonly be a `WOperator` type defined by OrdinaryDiffEq.jl. It is a lazy
representation of the operator. Users can construct the W-matrix on demand
by calling `convert(AbstractMatrix,W)` to receive an `AbstractMatrix` matching
the `jac_prototype`.
- `du`: the current ODE derivative
- `u`: the current ODE state
- `p`: the ODE parameters
- `t`: the current ODE time
- `newW`: a `Bool` which specifies whether the `W` matrix has been updated since
the last call to `precs`. It is recommended that this is checked to only
update the preconditioner when `newW == true`.
- `Plprev`: the previous `Pl`.
- `Prprev`: the previous `Pr`.
- `solverdata`: Optional extra data the solvers can give to the `precs` function.
Solver-dependent and subject to change.
The return is a tuple `(Pl,Pr)` of the LinearSolve.jl-compatible preconditioners.
To specify one-sided preconditioning, simply return `nothing` for the preconditioner
which is not used. Additionally, `precs` must supply the dispatch:
```julia
Pl, Pr = precs(W, du, u, p, t, ::Nothing, ::Nothing, ::Nothing, solverdata)
```
which is used in the solver setup phase to construct the integrator
type with the preconditioners `(Pl,Pr)`.
The default is `precs=DEFAULT_PRECS` where the default preconditioner function
is defined as:
```julia
DEFAULT_PRECS(W, du, u, p, t, newW, Plprev, Prprev, solverdata) = nothing, nothing
```
step_limiter! = OrdinaryDiffEq.trivial_limiter!)
Rosenbrock-Wanner Method. 3rd order A-stable and stiffly stable Rosenbrock method. Keeps high accuracy on discretizations of nonlinear parabolic PDEs.
Keyword Arguments
chunk_size
: TBDstandardtag
: TBDautodiff
: boolean to control if the Jacobian should be computed via AD or notconcrete_jac
: function of the formjac!(J, u, p, t)
diff_type
: TBDlinsolve
: custom solver for the inner linear systemsprecs
: custom preconditioner for the inner linear solverstep_limiter!
: function of the formlimiter!(u, integrator, p, t)
References
- Lang, J. & Verwer, ROS3P—An Accurate Third-Order Rosenbrock Solver Designed for Parabolic Problems J. BIT Numerical Mathematics (2001) 41: 731. doi:10.1023/A:1021900219772
OrdinaryDiffEqRosenbrock.Rodas3
— TypeRodas3(; - `standardtag`: Specifies whether to use package-specific tags instead of the
ForwardDiff default function-specific tags. For more information, see
[this blog post](https://www.stochasticlifestyle.com/improved-forwarddiff-jl-stacktraces-with-package-tags/).
Defaults to `Val{true}()`.
- `autodiff`: Uses [ADTypes.jl](https://sciml.github.io/ADTypes.jl/stable/)
to specify whether to use automatic differentiation via
[ForwardDiff.jl](https://github.com/JuliaDiff/ForwardDiff.jl) or finite
differencing via [FiniteDiff.jl](https://github.com/JuliaDiff/FiniteDiff.jl).
Defaults to `AutoForwardDiff()` for automatic differentiation, which by default uses
`chunksize = 0`, and thus uses the internal ForwardDiff.jl algorithm for the choice.
To use `FiniteDiff.jl`, the `AutoFiniteDiff()` ADType can be used, which has a keyword argument
`fdtype` with default value `Val{:forward}()`, and alternatives `Val{:central}()` and `Val{:complex}()`.
- `concrete_jac`: Specifies whether a Jacobian should be constructed. Defaults to
`nothing`, which means it will be chosen true/false depending on circumstances
of the solver, such as whether a Krylov subspace method is used for `linsolve`.
- `linsolve`: Any [LinearSolve.jl](https://github.com/SciML/LinearSolve.jl) compatible linear solver.
For example, to use [KLU.jl](https://github.com/JuliaSparse/KLU.jl), specify
`Rodas3(linsolve = KLUFactorization()`).
When `nothing` is passed, uses `DefaultLinearSolver`.
- `precs`: Any [LinearSolve.jl-compatible preconditioner](https://docs.sciml.ai/LinearSolve/stable/basics/Preconditioners/)
can be used as a left or right preconditioner.
Preconditioners are specified by the `Pl,Pr = precs(W,du,u,p,t,newW,Plprev,Prprev,solverdata)`
function where the arguments are defined as:
- `W`: the current Jacobian of the nonlinear system. Specified as either
``I - \gamma J`` or ``I/\gamma - J`` depending on the algorithm. This will
commonly be a `WOperator` type defined by OrdinaryDiffEq.jl. It is a lazy
representation of the operator. Users can construct the W-matrix on demand
by calling `convert(AbstractMatrix,W)` to receive an `AbstractMatrix` matching
the `jac_prototype`.
- `du`: the current ODE derivative
- `u`: the current ODE state
- `p`: the ODE parameters
- `t`: the current ODE time
- `newW`: a `Bool` which specifies whether the `W` matrix has been updated since
the last call to `precs`. It is recommended that this is checked to only
update the preconditioner when `newW == true`.
- `Plprev`: the previous `Pl`.
- `Prprev`: the previous `Pr`.
- `solverdata`: Optional extra data the solvers can give to the `precs` function.
Solver-dependent and subject to change.
The return is a tuple `(Pl,Pr)` of the LinearSolve.jl-compatible preconditioners.
To specify one-sided preconditioning, simply return `nothing` for the preconditioner
which is not used. Additionally, `precs` must supply the dispatch:
```julia
Pl, Pr = precs(W, du, u, p, t, ::Nothing, ::Nothing, ::Nothing, solverdata)
```
which is used in the solver setup phase to construct the integrator
type with the preconditioners `(Pl,Pr)`.
The default is `precs=DEFAULT_PRECS` where the default preconditioner function
is defined as:
```julia
DEFAULT_PRECS(W, du, u, p, t, newW, Plprev, Prprev, solverdata) = nothing, nothing
```
step_limiter! = OrdinaryDiffEq.trivial_limiter!)
Rosenbrock-Wanner Method. 3rd order A-stable and stiffly stable Rosenbrock method.
Keyword Arguments
chunk_size
: TBDstandardtag
: TBDautodiff
: boolean to control if the Jacobian should be computed via AD or notconcrete_jac
: function of the formjac!(J, u, p, t)
diff_type
: TBDlinsolve
: custom solver for the inner linear systemsprecs
: custom preconditioner for the inner linear solverstep_limiter!
: function of the formlimiter!(u, integrator, p, t)
References
- Sandu, Verwer, Van Loon, Carmichael, Potra, Dabdub, Seinfeld, Benchmarking stiff ode solvers for atmospheric chemistry problems-I. implicit vs explicit, Atmospheric Environment, 31(19), 3151-3166, 1997.
OrdinaryDiffEqRosenbrock.Rodas23W
— TypeRodas23W(; chunk_size = Val{0}(),
standardtag = Val{true}(),
autodiff = AutoForwardDiff(),
concrete_jac = nothing,
diff_type = Val{:forward}(),
linsolve = nothing,
precs = DEFAULT_PRECS,
step_limiter! = OrdinaryDiffEq.trivial_limiter!)
Rosenbrock-Wanner-W(olfbrandt) Method. An Order 2/3 L-Stable Rosenbrock-W method for stiff ODEs and DAEs in mass matrix form. 2nd order stiff-aware interpolation and additional error test for interpolation.
Keyword Arguments
standardtag
: Specifies whether to use package-specific tags instead of the ForwardDiff default function-specific tags. For more information, see this blog post. Defaults toVal{true}()
.autodiff
: Uses ADTypes.jl to specify whether to use automatic differentiation via ForwardDiff.jl or finite differencing via FiniteDiff.jl. Defaults toAutoForwardDiff()
for automatic differentiation, which by default useschunksize = 0
, and thus uses the internal ForwardDiff.jl algorithm for the choice. To useFiniteDiff.jl
, theAutoFiniteDiff()
ADType can be used, which has a keyword argumentfdtype
with default valueVal{:forward}()
, and alternativesVal{:central}()
andVal{:complex}()
.concrete_jac
: Specifies whether a Jacobian should be constructed. Defaults tonothing
, which means it will be chosen true/false depending on circumstances of the solver, such as whether a Krylov subspace method is used forlinsolve
.linsolve
: Any LinearSolve.jl compatible linear solver. For example, to use KLU.jl, specifyRodas23W(linsolve = KLUFactorization()
). Whennothing
is passed, usesDefaultLinearSolver
.precs
: Any LinearSolve.jl-compatible preconditioner can be used as a left or right preconditioner. Preconditioners are specified by thePl,Pr = precs(W,du,u,p,t,newW,Plprev,Prprev,solverdata)
function where the arguments are defined as:W
: the current Jacobian of the nonlinear system. Specified as either $I - \gamma J$ or $I/\gamma - J$ depending on the algorithm. This will commonly be aWOperator
type defined by OrdinaryDiffEq.jl. It is a lazy representation of the operator. Users can construct the W-matrix on demand by callingconvert(AbstractMatrix,W)
to receive anAbstractMatrix
matching thejac_prototype
.du
: the current ODE derivativeu
: the current ODE statep
: the ODE parameterst
: the current ODE timenewW
: aBool
which specifies whether theW
matrix has been updated since the last call toprecs
. It is recommended that this is checked to only update the preconditioner whennewW == true
.Plprev
: the previousPl
.Prprev
: the previousPr
.solverdata
: Optional extra data the solvers can give to theprecs
function. Solver-dependent and subject to change.
(Pl,Pr)
of the LinearSolve.jl-compatible preconditioners. To specify one-sided preconditioning, simply returnnothing
for the preconditioner which is not used. Additionally,precs
must supply the dispatch:
which is used in the solver setup phase to construct the integrator type with the preconditionersPl, Pr = precs(W, du, u, p, t, ::Nothing, ::Nothing, ::Nothing, solverdata)
(Pl,Pr)
. The default isprecs=DEFAULT_PRECS
where the default preconditioner function is defined as:DEFAULT_PRECS(W, du, u, p, t, newW, Plprev, Prprev, solverdata) = nothing, nothing
step_limiter!
: function of the formlimiter!(u, integrator, p, t)
References
- Steinebach G., Rosenbrock methods within OrdinaryDiffEq.jl - Overview, recent developments and applications - Preprint 2024 https://github.com/hbrs-cse/RosenbrockMethods/blob/main/paper/JuliaPaper.pdf
OrdinaryDiffEqRosenbrock.Rodas3P
— TypeRodas3P(; - `standardtag`: Specifies whether to use package-specific tags instead of the
ForwardDiff default function-specific tags. For more information, see
[this blog post](https://www.stochasticlifestyle.com/improved-forwarddiff-jl-stacktraces-with-package-tags/).
Defaults to `Val{true}()`.
- `autodiff`: Uses [ADTypes.jl](https://sciml.github.io/ADTypes.jl/stable/)
to specify whether to use automatic differentiation via
[ForwardDiff.jl](https://github.com/JuliaDiff/ForwardDiff.jl) or finite
differencing via [FiniteDiff.jl](https://github.com/JuliaDiff/FiniteDiff.jl).
Defaults to `AutoForwardDiff()` for automatic differentiation, which by default uses
`chunksize = 0`, and thus uses the internal ForwardDiff.jl algorithm for the choice.
To use `FiniteDiff.jl`, the `AutoFiniteDiff()` ADType can be used, which has a keyword argument
`fdtype` with default value `Val{:forward}()`, and alternatives `Val{:central}()` and `Val{:complex}()`.
- `concrete_jac`: Specifies whether a Jacobian should be constructed. Defaults to
`nothing`, which means it will be chosen true/false depending on circumstances
of the solver, such as whether a Krylov subspace method is used for `linsolve`.
- `linsolve`: Any [LinearSolve.jl](https://github.com/SciML/LinearSolve.jl) compatible linear solver.
For example, to use [KLU.jl](https://github.com/JuliaSparse/KLU.jl), specify
`Rodas3P(linsolve = KLUFactorization()`).
When `nothing` is passed, uses `DefaultLinearSolver`.
- `precs`: Any [LinearSolve.jl-compatible preconditioner](https://docs.sciml.ai/LinearSolve/stable/basics/Preconditioners/)
can be used as a left or right preconditioner.
Preconditioners are specified by the `Pl,Pr = precs(W,du,u,p,t,newW,Plprev,Prprev,solverdata)`
function where the arguments are defined as:
- `W`: the current Jacobian of the nonlinear system. Specified as either
``I - \gamma J`` or ``I/\gamma - J`` depending on the algorithm. This will
commonly be a `WOperator` type defined by OrdinaryDiffEq.jl. It is a lazy
representation of the operator. Users can construct the W-matrix on demand
by calling `convert(AbstractMatrix,W)` to receive an `AbstractMatrix` matching
the `jac_prototype`.
- `du`: the current ODE derivative
- `u`: the current ODE state
- `p`: the ODE parameters
- `t`: the current ODE time
- `newW`: a `Bool` which specifies whether the `W` matrix has been updated since
the last call to `precs`. It is recommended that this is checked to only
update the preconditioner when `newW == true`.
- `Plprev`: the previous `Pl`.
- `Prprev`: the previous `Pr`.
- `solverdata`: Optional extra data the solvers can give to the `precs` function.
Solver-dependent and subject to change.
The return is a tuple `(Pl,Pr)` of the LinearSolve.jl-compatible preconditioners.
To specify one-sided preconditioning, simply return `nothing` for the preconditioner
which is not used. Additionally, `precs` must supply the dispatch:
```julia
Pl, Pr = precs(W, du, u, p, t, ::Nothing, ::Nothing, ::Nothing, solverdata)
```
which is used in the solver setup phase to construct the integrator
type with the preconditioners `(Pl,Pr)`.
The default is `precs=DEFAULT_PRECS` where the default preconditioner function
is defined as:
```julia
DEFAULT_PRECS(W, du, u, p, t, newW, Plprev, Prprev, solverdata) = nothing, nothing
```
step_limiter! = OrdinaryDiffEq.trivial_limiter!)
Rosenbrock-Wanner Method. 3rd order A-stable and stiffly stable Rosenbrock method with a stiff-aware 3rd order interpolant and additional error test for interpolation. Keeps accuracy on discretizations of linear parabolic PDEs.
Keyword Arguments
chunk_size
: TBDstandardtag
: TBDautodiff
: boolean to control if the Jacobian should be computed via AD or notconcrete_jac
: function of the formjac!(J, u, p, t)
diff_type
: TBDlinsolve
: custom solver for the inner linear systemsprecs
: custom preconditioner for the inner linear solverstep_limiter!
: function of the formlimiter!(u, integrator, p, t)
References
- Steinebach G., Rosenbrock methods within OrdinaryDiffEq.jl - Overview, recent developments and applications - Preprint 2024 https://github.com/hbrs-cse/RosenbrockMethods/blob/main/paper/JuliaPaper.pdf
OrdinaryDiffEqRosenbrock.Rodas4
— TypeRodas4(; - `standardtag`: Specifies whether to use package-specific tags instead of the
ForwardDiff default function-specific tags. For more information, see
[this blog post](https://www.stochasticlifestyle.com/improved-forwarddiff-jl-stacktraces-with-package-tags/).
Defaults to `Val{true}()`.
- `autodiff`: Uses [ADTypes.jl](https://sciml.github.io/ADTypes.jl/stable/)
to specify whether to use automatic differentiation via
[ForwardDiff.jl](https://github.com/JuliaDiff/ForwardDiff.jl) or finite
differencing via [FiniteDiff.jl](https://github.com/JuliaDiff/FiniteDiff.jl).
Defaults to `AutoForwardDiff()` for automatic differentiation, which by default uses
`chunksize = 0`, and thus uses the internal ForwardDiff.jl algorithm for the choice.
To use `FiniteDiff.jl`, the `AutoFiniteDiff()` ADType can be used, which has a keyword argument
`fdtype` with default value `Val{:forward}()`, and alternatives `Val{:central}()` and `Val{:complex}()`.
- `concrete_jac`: Specifies whether a Jacobian should be constructed. Defaults to
`nothing`, which means it will be chosen true/false depending on circumstances
of the solver, such as whether a Krylov subspace method is used for `linsolve`.
- `linsolve`: Any [LinearSolve.jl](https://github.com/SciML/LinearSolve.jl) compatible linear solver.
For example, to use [KLU.jl](https://github.com/JuliaSparse/KLU.jl), specify
`Rodas4(linsolve = KLUFactorization()`).
When `nothing` is passed, uses `DefaultLinearSolver`.
- `precs`: Any [LinearSolve.jl-compatible preconditioner](https://docs.sciml.ai/LinearSolve/stable/basics/Preconditioners/)
can be used as a left or right preconditioner.
Preconditioners are specified by the `Pl,Pr = precs(W,du,u,p,t,newW,Plprev,Prprev,solverdata)`
function where the arguments are defined as:
- `W`: the current Jacobian of the nonlinear system. Specified as either
``I - \gamma J`` or ``I/\gamma - J`` depending on the algorithm. This will
commonly be a `WOperator` type defined by OrdinaryDiffEq.jl. It is a lazy
representation of the operator. Users can construct the W-matrix on demand
by calling `convert(AbstractMatrix,W)` to receive an `AbstractMatrix` matching
the `jac_prototype`.
- `du`: the current ODE derivative
- `u`: the current ODE state
- `p`: the ODE parameters
- `t`: the current ODE time
- `newW`: a `Bool` which specifies whether the `W` matrix has been updated since
the last call to `precs`. It is recommended that this is checked to only
update the preconditioner when `newW == true`.
- `Plprev`: the previous `Pl`.
- `Prprev`: the previous `Pr`.
- `solverdata`: Optional extra data the solvers can give to the `precs` function.
Solver-dependent and subject to change.
The return is a tuple `(Pl,Pr)` of the LinearSolve.jl-compatible preconditioners.
To specify one-sided preconditioning, simply return `nothing` for the preconditioner
which is not used. Additionally, `precs` must supply the dispatch:
```julia
Pl, Pr = precs(W, du, u, p, t, ::Nothing, ::Nothing, ::Nothing, solverdata)
```
which is used in the solver setup phase to construct the integrator
type with the preconditioners `(Pl,Pr)`.
The default is `precs=DEFAULT_PRECS` where the default preconditioner function
is defined as:
```julia
DEFAULT_PRECS(W, du, u, p, t, newW, Plprev, Prprev, solverdata) = nothing, nothing
```
step_limiter! = OrdinaryDiffEq.trivial_limiter!)
Rosenbrock-Wanner Method. A 4th order A-stable stiffly stable Rosenbrock method with a stiff-aware 3rd order interpolant
Keyword Arguments
chunk_size
: TBDstandardtag
: TBDautodiff
: boolean to control if the Jacobian should be computed via AD or notconcrete_jac
: function of the formjac!(J, u, p, t)
diff_type
: TBDlinsolve
: custom solver for the inner linear systemsprecs
: custom preconditioner for the inner linear solverstep_limiter!
: function of the formlimiter!(u, integrator, p, t)
References
- E. Hairer, G. Wanner, Solving ordinary differential equations II, stiff and differential-algebraic problems. Computational mathematics (2nd revised ed.), Springer (1996)
OrdinaryDiffEqRosenbrock.Rodas42
— TypeRodas42(; - `standardtag`: Specifies whether to use package-specific tags instead of the
ForwardDiff default function-specific tags. For more information, see
[this blog post](https://www.stochasticlifestyle.com/improved-forwarddiff-jl-stacktraces-with-package-tags/).
Defaults to `Val{true}()`.
- `autodiff`: Uses [ADTypes.jl](https://sciml.github.io/ADTypes.jl/stable/)
to specify whether to use automatic differentiation via
[ForwardDiff.jl](https://github.com/JuliaDiff/ForwardDiff.jl) or finite
differencing via [FiniteDiff.jl](https://github.com/JuliaDiff/FiniteDiff.jl).
Defaults to `AutoForwardDiff()` for automatic differentiation, which by default uses
`chunksize = 0`, and thus uses the internal ForwardDiff.jl algorithm for the choice.
To use `FiniteDiff.jl`, the `AutoFiniteDiff()` ADType can be used, which has a keyword argument
`fdtype` with default value `Val{:forward}()`, and alternatives `Val{:central}()` and `Val{:complex}()`.
- `concrete_jac`: Specifies whether a Jacobian should be constructed. Defaults to
`nothing`, which means it will be chosen true/false depending on circumstances
of the solver, such as whether a Krylov subspace method is used for `linsolve`.
- `linsolve`: Any [LinearSolve.jl](https://github.com/SciML/LinearSolve.jl) compatible linear solver.
For example, to use [KLU.jl](https://github.com/JuliaSparse/KLU.jl), specify
`Rodas42(linsolve = KLUFactorization()`).
When `nothing` is passed, uses `DefaultLinearSolver`.
- `precs`: Any [LinearSolve.jl-compatible preconditioner](https://docs.sciml.ai/LinearSolve/stable/basics/Preconditioners/)
can be used as a left or right preconditioner.
Preconditioners are specified by the `Pl,Pr = precs(W,du,u,p,t,newW,Plprev,Prprev,solverdata)`
function where the arguments are defined as:
- `W`: the current Jacobian of the nonlinear system. Specified as either
``I - \gamma J`` or ``I/\gamma - J`` depending on the algorithm. This will
commonly be a `WOperator` type defined by OrdinaryDiffEq.jl. It is a lazy
representation of the operator. Users can construct the W-matrix on demand
by calling `convert(AbstractMatrix,W)` to receive an `AbstractMatrix` matching
the `jac_prototype`.
- `du`: the current ODE derivative
- `u`: the current ODE state
- `p`: the ODE parameters
- `t`: the current ODE time
- `newW`: a `Bool` which specifies whether the `W` matrix has been updated since
the last call to `precs`. It is recommended that this is checked to only
update the preconditioner when `newW == true`.
- `Plprev`: the previous `Pl`.
- `Prprev`: the previous `Pr`.
- `solverdata`: Optional extra data the solvers can give to the `precs` function.
Solver-dependent and subject to change.
The return is a tuple `(Pl,Pr)` of the LinearSolve.jl-compatible preconditioners.
To specify one-sided preconditioning, simply return `nothing` for the preconditioner
which is not used. Additionally, `precs` must supply the dispatch:
```julia
Pl, Pr = precs(W, du, u, p, t, ::Nothing, ::Nothing, ::Nothing, solverdata)
```
which is used in the solver setup phase to construct the integrator
type with the preconditioners `(Pl,Pr)`.
The default is `precs=DEFAULT_PRECS` where the default preconditioner function
is defined as:
```julia
DEFAULT_PRECS(W, du, u, p, t, newW, Plprev, Prprev, solverdata) = nothing, nothing
```
step_limiter! = OrdinaryDiffEq.trivial_limiter!)
Rosenbrock-Wanner Method. A 4th order A-stable stiffly stable Rosenbrock method with a stiff-aware 3rd order interpolant
Keyword Arguments
chunk_size
: TBDstandardtag
: TBDautodiff
: boolean to control if the Jacobian should be computed via AD or notconcrete_jac
: function of the formjac!(J, u, p, t)
diff_type
: TBDlinsolve
: custom solver for the inner linear systemsprecs
: custom preconditioner for the inner linear solverstep_limiter!
: function of the formlimiter!(u, integrator, p, t)
References
- E. Hairer, G. Wanner, Solving ordinary differential equations II, stiff and differential-algebraic problems. Computational mathematics (2nd revised ed.), Springer (1996)
OrdinaryDiffEqRosenbrock.Rodas4P
— TypeRodas4P(; - `standardtag`: Specifies whether to use package-specific tags instead of the
ForwardDiff default function-specific tags. For more information, see
[this blog post](https://www.stochasticlifestyle.com/improved-forwarddiff-jl-stacktraces-with-package-tags/).
Defaults to `Val{true}()`.
- `autodiff`: Uses [ADTypes.jl](https://sciml.github.io/ADTypes.jl/stable/)
to specify whether to use automatic differentiation via
[ForwardDiff.jl](https://github.com/JuliaDiff/ForwardDiff.jl) or finite
differencing via [FiniteDiff.jl](https://github.com/JuliaDiff/FiniteDiff.jl).
Defaults to `AutoForwardDiff()` for automatic differentiation, which by default uses
`chunksize = 0`, and thus uses the internal ForwardDiff.jl algorithm for the choice.
To use `FiniteDiff.jl`, the `AutoFiniteDiff()` ADType can be used, which has a keyword argument
`fdtype` with default value `Val{:forward}()`, and alternatives `Val{:central}()` and `Val{:complex}()`.
- `concrete_jac`: Specifies whether a Jacobian should be constructed. Defaults to
`nothing`, which means it will be chosen true/false depending on circumstances
of the solver, such as whether a Krylov subspace method is used for `linsolve`.
- `linsolve`: Any [LinearSolve.jl](https://github.com/SciML/LinearSolve.jl) compatible linear solver.
For example, to use [KLU.jl](https://github.com/JuliaSparse/KLU.jl), specify
`Rodas4P(linsolve = KLUFactorization()`).
When `nothing` is passed, uses `DefaultLinearSolver`.
- `precs`: Any [LinearSolve.jl-compatible preconditioner](https://docs.sciml.ai/LinearSolve/stable/basics/Preconditioners/)
can be used as a left or right preconditioner.
Preconditioners are specified by the `Pl,Pr = precs(W,du,u,p,t,newW,Plprev,Prprev,solverdata)`
function where the arguments are defined as:
- `W`: the current Jacobian of the nonlinear system. Specified as either
``I - \gamma J`` or ``I/\gamma - J`` depending on the algorithm. This will
commonly be a `WOperator` type defined by OrdinaryDiffEq.jl. It is a lazy
representation of the operator. Users can construct the W-matrix on demand
by calling `convert(AbstractMatrix,W)` to receive an `AbstractMatrix` matching
the `jac_prototype`.
- `du`: the current ODE derivative
- `u`: the current ODE state
- `p`: the ODE parameters
- `t`: the current ODE time
- `newW`: a `Bool` which specifies whether the `W` matrix has been updated since
the last call to `precs`. It is recommended that this is checked to only
update the preconditioner when `newW == true`.
- `Plprev`: the previous `Pl`.
- `Prprev`: the previous `Pr`.
- `solverdata`: Optional extra data the solvers can give to the `precs` function.
Solver-dependent and subject to change.
The return is a tuple `(Pl,Pr)` of the LinearSolve.jl-compatible preconditioners.
To specify one-sided preconditioning, simply return `nothing` for the preconditioner
which is not used. Additionally, `precs` must supply the dispatch:
```julia
Pl, Pr = precs(W, du, u, p, t, ::Nothing, ::Nothing, ::Nothing, solverdata)
```
which is used in the solver setup phase to construct the integrator
type with the preconditioners `(Pl,Pr)`.
The default is `precs=DEFAULT_PRECS` where the default preconditioner function
is defined as:
```julia
DEFAULT_PRECS(W, du, u, p, t, newW, Plprev, Prprev, solverdata) = nothing, nothing
```
step_limiter! = OrdinaryDiffEq.trivial_limiter!)
Rosenbrock-Wanner Method. 4th order A-stable stiffly stable Rosenbrock method with a stiff-aware 3rd order interpolant. 4th order on linear parabolic problems and 3rd order accurate on nonlinear parabolic problems (as opposed to lower if not corrected).
Keyword Arguments
chunk_size
: TBDstandardtag
: TBDautodiff
: boolean to control if the Jacobian should be computed via AD or notconcrete_jac
: function of the formjac!(J, u, p, t)
diff_type
: TBDlinsolve
: custom solver for the inner linear systemsprecs
: custom preconditioner for the inner linear solverstep_limiter!
: function of the formlimiter!(u, integrator, p, t)
References
- Steinebach, G., Rentrop, P., An adaptive method of lines approach for modelling flow and transport in rivers. Adaptive method of lines , Wouver, A. Vande, Sauces, Ph., Schiesser, W.E. (ed.),S. 181-205,Chapman & Hall/CRC, 2001,
- Steinebach, G., Oder-reduction of ROW-methods for DAEs and method of lines applications. Preprint-Nr. 1741, FB Mathematik, TH Darmstadt, 1995.
OrdinaryDiffEqRosenbrock.Rodas4P2
— TypeRodas4P2(; chunk_size = Val{0}(),
standardtag = Val{true}(),
autodiff = AutoForwardDiff(),
concrete_jac = nothing,
diff_type = Val{:forward}(),
linsolve = nothing,
precs = DEFAULT_PRECS,
step_limiter! = OrdinaryDiffEq.trivial_limiter!)
Rosenbrock-Wanner-W(olfbrandt) Method. A 4th order L-stable stiffly stable Rosenbrock method with a stiff-aware 3rd order interpolant. 4th order on linear parabolic problems and 3rd order accurate on nonlinear parabolic problems. It is an improvement of Roadas4P and in case of inexact Jacobians a second order W method.
Keyword Arguments
standardtag
: Specifies whether to use package-specific tags instead of the ForwardDiff default function-specific tags. For more information, see this blog post. Defaults toVal{true}()
.autodiff
: Uses ADTypes.jl to specify whether to use automatic differentiation via ForwardDiff.jl or finite differencing via FiniteDiff.jl. Defaults toAutoForwardDiff()
for automatic differentiation, which by default useschunksize = 0
, and thus uses the internal ForwardDiff.jl algorithm for the choice. To useFiniteDiff.jl
, theAutoFiniteDiff()
ADType can be used, which has a keyword argumentfdtype
with default valueVal{:forward}()
, and alternativesVal{:central}()
andVal{:complex}()
.concrete_jac
: Specifies whether a Jacobian should be constructed. Defaults tonothing
, which means it will be chosen true/false depending on circumstances of the solver, such as whether a Krylov subspace method is used forlinsolve
.linsolve
: Any LinearSolve.jl compatible linear solver. For example, to use KLU.jl, specifyRodas4P2(linsolve = KLUFactorization()
). Whennothing
is passed, usesDefaultLinearSolver
.precs
: Any LinearSolve.jl-compatible preconditioner can be used as a left or right preconditioner. Preconditioners are specified by thePl,Pr = precs(W,du,u,p,t,newW,Plprev,Prprev,solverdata)
function where the arguments are defined as:W
: the current Jacobian of the nonlinear system. Specified as either $I - \gamma J$ or $I/\gamma - J$ depending on the algorithm. This will commonly be aWOperator
type defined by OrdinaryDiffEq.jl. It is a lazy representation of the operator. Users can construct the W-matrix on demand by callingconvert(AbstractMatrix,W)
to receive anAbstractMatrix
matching thejac_prototype
.du
: the current ODE derivativeu
: the current ODE statep
: the ODE parameterst
: the current ODE timenewW
: aBool
which specifies whether theW
matrix has been updated since the last call toprecs
. It is recommended that this is checked to only update the preconditioner whennewW == true
.Plprev
: the previousPl
.Prprev
: the previousPr
.solverdata
: Optional extra data the solvers can give to theprecs
function. Solver-dependent and subject to change.
(Pl,Pr)
of the LinearSolve.jl-compatible preconditioners. To specify one-sided preconditioning, simply returnnothing
for the preconditioner which is not used. Additionally,precs
must supply the dispatch:
which is used in the solver setup phase to construct the integrator type with the preconditionersPl, Pr = precs(W, du, u, p, t, ::Nothing, ::Nothing, ::Nothing, solverdata)
(Pl,Pr)
. The default isprecs=DEFAULT_PRECS
where the default preconditioner function is defined as:DEFAULT_PRECS(W, du, u, p, t, newW, Plprev, Prprev, solverdata) = nothing, nothing
step_limiter!
: function of the formlimiter!(u, integrator, p, t)
References
- Steinebach G., Improvement of Rosenbrock-Wanner Method RODASP, In: Reis T., Grundel S., Schöps S. (eds) Progress in Differential-Algebraic Equations II. Differential-Algebraic Equations Forum. Springer, Cham., 165-184, 2020.
OrdinaryDiffEqRosenbrock.Rodas5
— TypeRodas5(; - `standardtag`: Specifies whether to use package-specific tags instead of the
ForwardDiff default function-specific tags. For more information, see
[this blog post](https://www.stochasticlifestyle.com/improved-forwarddiff-jl-stacktraces-with-package-tags/).
Defaults to `Val{true}()`.
- `autodiff`: Uses [ADTypes.jl](https://sciml.github.io/ADTypes.jl/stable/)
to specify whether to use automatic differentiation via
[ForwardDiff.jl](https://github.com/JuliaDiff/ForwardDiff.jl) or finite
differencing via [FiniteDiff.jl](https://github.com/JuliaDiff/FiniteDiff.jl).
Defaults to `AutoForwardDiff()` for automatic differentiation, which by default uses
`chunksize = 0`, and thus uses the internal ForwardDiff.jl algorithm for the choice.
To use `FiniteDiff.jl`, the `AutoFiniteDiff()` ADType can be used, which has a keyword argument
`fdtype` with default value `Val{:forward}()`, and alternatives `Val{:central}()` and `Val{:complex}()`.
- `concrete_jac`: Specifies whether a Jacobian should be constructed. Defaults to
`nothing`, which means it will be chosen true/false depending on circumstances
of the solver, such as whether a Krylov subspace method is used for `linsolve`.
- `linsolve`: Any [LinearSolve.jl](https://github.com/SciML/LinearSolve.jl) compatible linear solver.
For example, to use [KLU.jl](https://github.com/JuliaSparse/KLU.jl), specify
`Rodas5(linsolve = KLUFactorization()`).
When `nothing` is passed, uses `DefaultLinearSolver`.
- `precs`: Any [LinearSolve.jl-compatible preconditioner](https://docs.sciml.ai/LinearSolve/stable/basics/Preconditioners/)
can be used as a left or right preconditioner.
Preconditioners are specified by the `Pl,Pr = precs(W,du,u,p,t,newW,Plprev,Prprev,solverdata)`
function where the arguments are defined as:
- `W`: the current Jacobian of the nonlinear system. Specified as either
``I - \gamma J`` or ``I/\gamma - J`` depending on the algorithm. This will
commonly be a `WOperator` type defined by OrdinaryDiffEq.jl. It is a lazy
representation of the operator. Users can construct the W-matrix on demand
by calling `convert(AbstractMatrix,W)` to receive an `AbstractMatrix` matching
the `jac_prototype`.
- `du`: the current ODE derivative
- `u`: the current ODE state
- `p`: the ODE parameters
- `t`: the current ODE time
- `newW`: a `Bool` which specifies whether the `W` matrix has been updated since
the last call to `precs`. It is recommended that this is checked to only
update the preconditioner when `newW == true`.
- `Plprev`: the previous `Pl`.
- `Prprev`: the previous `Pr`.
- `solverdata`: Optional extra data the solvers can give to the `precs` function.
Solver-dependent and subject to change.
The return is a tuple `(Pl,Pr)` of the LinearSolve.jl-compatible preconditioners.
To specify one-sided preconditioning, simply return `nothing` for the preconditioner
which is not used. Additionally, `precs` must supply the dispatch:
```julia
Pl, Pr = precs(W, du, u, p, t, ::Nothing, ::Nothing, ::Nothing, solverdata)
```
which is used in the solver setup phase to construct the integrator
type with the preconditioners `(Pl,Pr)`.
The default is `precs=DEFAULT_PRECS` where the default preconditioner function
is defined as:
```julia
DEFAULT_PRECS(W, du, u, p, t, newW, Plprev, Prprev, solverdata) = nothing, nothing
```
step_limiter! = OrdinaryDiffEq.trivial_limiter!)
Rosenbrock-Wanner Method. A 5th order A-stable stiffly stable Rosenbrock method with a stiff-aware 4th order interpolant.
Keyword Arguments
chunk_size
: TBDstandardtag
: TBDautodiff
: boolean to control if the Jacobian should be computed via AD or notconcrete_jac
: function of the formjac!(J, u, p, t)
diff_type
: TBDlinsolve
: custom solver for the inner linear systemsprecs
: custom preconditioner for the inner linear solverstep_limiter!
: function of the formlimiter!(u, integrator, p, t)
References
- Di Marzo G. RODAS5(4) – Méthodes de Rosenbrock d’ordre 5(4) adaptées aux problemes différentiels-algébriques. MSc mathematics thesis, Faculty of Science, University of Geneva, Switzerland.
OrdinaryDiffEqRosenbrock.Rodas5P
— TypeRodas5P(; chunk_size = Val{0}(),
standardtag = Val{true}(),
autodiff = AutoForwardDiff(),
concrete_jac = nothing,
diff_type = Val{:forward}(),
linsolve = nothing,
precs = DEFAULT_PRECS,
step_limiter! = OrdinaryDiffEq.trivial_limiter!)
Rosenbrock-Wanner-W(olfbrandt) Method. A 5th order A-stable stiffly stable Rosenbrock method with a stiff-aware 4th order interpolant. Has improved stability in the adaptive time stepping embedding.
Keyword Arguments
standardtag
: Specifies whether to use package-specific tags instead of the ForwardDiff default function-specific tags. For more information, see this blog post. Defaults toVal{true}()
.autodiff
: Uses ADTypes.jl to specify whether to use automatic differentiation via ForwardDiff.jl or finite differencing via FiniteDiff.jl. Defaults toAutoForwardDiff()
for automatic differentiation, which by default useschunksize = 0
, and thus uses the internal ForwardDiff.jl algorithm for the choice. To useFiniteDiff.jl
, theAutoFiniteDiff()
ADType can be used, which has a keyword argumentfdtype
with default valueVal{:forward}()
, and alternativesVal{:central}()
andVal{:complex}()
.concrete_jac
: Specifies whether a Jacobian should be constructed. Defaults tonothing
, which means it will be chosen true/false depending on circumstances of the solver, such as whether a Krylov subspace method is used forlinsolve
.linsolve
: Any LinearSolve.jl compatible linear solver. For example, to use KLU.jl, specifyRodas5P(linsolve = KLUFactorization()
). Whennothing
is passed, usesDefaultLinearSolver
.precs
: Any LinearSolve.jl-compatible preconditioner can be used as a left or right preconditioner. Preconditioners are specified by thePl,Pr = precs(W,du,u,p,t,newW,Plprev,Prprev,solverdata)
function where the arguments are defined as:W
: the current Jacobian of the nonlinear system. Specified as either $I - \gamma J$ or $I/\gamma - J$ depending on the algorithm. This will commonly be aWOperator
type defined by OrdinaryDiffEq.jl. It is a lazy representation of the operator. Users can construct the W-matrix on demand by callingconvert(AbstractMatrix,W)
to receive anAbstractMatrix
matching thejac_prototype
.du
: the current ODE derivativeu
: the current ODE statep
: the ODE parameterst
: the current ODE timenewW
: aBool
which specifies whether theW
matrix has been updated since the last call toprecs
. It is recommended that this is checked to only update the preconditioner whennewW == true
.Plprev
: the previousPl
.Prprev
: the previousPr
.solverdata
: Optional extra data the solvers can give to theprecs
function. Solver-dependent and subject to change.
(Pl,Pr)
of the LinearSolve.jl-compatible preconditioners. To specify one-sided preconditioning, simply returnnothing
for the preconditioner which is not used. Additionally,precs
must supply the dispatch:
which is used in the solver setup phase to construct the integrator type with the preconditionersPl, Pr = precs(W, du, u, p, t, ::Nothing, ::Nothing, ::Nothing, solverdata)
(Pl,Pr)
. The default isprecs=DEFAULT_PRECS
where the default preconditioner function is defined as:DEFAULT_PRECS(W, du, u, p, t, newW, Plprev, Prprev, solverdata) = nothing, nothing
step_limiter!
: function of the formlimiter!(u, integrator, p, t)
References
- Steinebach G. Construction of Rosenbrock–Wanner method Rodas5P and numerical benchmarks within the Julia Differential Equations package. In: BIT Numerical Mathematics, 63(2), 2023
OrdinaryDiffEqRosenbrock.Rodas5Pe
— TypeRodas5Pe(; chunk_size = Val{0}(),
standardtag = Val{true}(),
autodiff = AutoForwardDiff(),
concrete_jac = nothing,
diff_type = Val{:forward}(),
linsolve = nothing,
precs = DEFAULT_PRECS,
step_limiter! = OrdinaryDiffEq.trivial_limiter!)
Rosenbrock-Wanner-W(olfbrandt) Method. Variant of Ropdas5P with modified embedded scheme.
Keyword Arguments
standardtag
: Specifies whether to use package-specific tags instead of the ForwardDiff default function-specific tags. For more information, see this blog post. Defaults toVal{true}()
.autodiff
: Uses ADTypes.jl to specify whether to use automatic differentiation via ForwardDiff.jl or finite differencing via FiniteDiff.jl. Defaults toAutoForwardDiff()
for automatic differentiation, which by default useschunksize = 0
, and thus uses the internal ForwardDiff.jl algorithm for the choice. To useFiniteDiff.jl
, theAutoFiniteDiff()
ADType can be used, which has a keyword argumentfdtype
with default valueVal{:forward}()
, and alternativesVal{:central}()
andVal{:complex}()
.concrete_jac
: Specifies whether a Jacobian should be constructed. Defaults tonothing
, which means it will be chosen true/false depending on circumstances of the solver, such as whether a Krylov subspace method is used forlinsolve
.linsolve
: Any LinearSolve.jl compatible linear solver. For example, to use KLU.jl, specifyRodas5Pe(linsolve = KLUFactorization()
). Whennothing
is passed, usesDefaultLinearSolver
.precs
: Any LinearSolve.jl-compatible preconditioner can be used as a left or right preconditioner. Preconditioners are specified by thePl,Pr = precs(W,du,u,p,t,newW,Plprev,Prprev,solverdata)
function where the arguments are defined as:W
: the current Jacobian of the nonlinear system. Specified as either $I - \gamma J$ or $I/\gamma - J$ depending on the algorithm. This will commonly be aWOperator
type defined by OrdinaryDiffEq.jl. It is a lazy representation of the operator. Users can construct the W-matrix on demand by callingconvert(AbstractMatrix,W)
to receive anAbstractMatrix
matching thejac_prototype
.du
: the current ODE derivativeu
: the current ODE statep
: the ODE parameterst
: the current ODE timenewW
: aBool
which specifies whether theW
matrix has been updated since the last call toprecs
. It is recommended that this is checked to only update the preconditioner whennewW == true
.Plprev
: the previousPl
.Prprev
: the previousPr
.solverdata
: Optional extra data the solvers can give to theprecs
function. Solver-dependent and subject to change.
(Pl,Pr)
of the LinearSolve.jl-compatible preconditioners. To specify one-sided preconditioning, simply returnnothing
for the preconditioner which is not used. Additionally,precs
must supply the dispatch:
which is used in the solver setup phase to construct the integrator type with the preconditionersPl, Pr = precs(W, du, u, p, t, ::Nothing, ::Nothing, ::Nothing, solverdata)
(Pl,Pr)
. The default isprecs=DEFAULT_PRECS
where the default preconditioner function is defined as:DEFAULT_PRECS(W, du, u, p, t, newW, Plprev, Prprev, solverdata) = nothing, nothing
step_limiter!
: function of the formlimiter!(u, integrator, p, t)
References
- Steinebach G. Rosenbrock methods within OrdinaryDiffEq.jl - Overview, recent developments and applications - Preprint 2024 https://github.com/hbrs-cse/RosenbrockMethods/blob/main/paper/JuliaPaper.pdf
OrdinaryDiffEqRosenbrock.Rodas5Pr
— TypeRodas5Pr(; chunk_size = Val{0}(),
standardtag = Val{true}(),
autodiff = AutoForwardDiff(),
concrete_jac = nothing,
diff_type = Val{:forward}(),
linsolve = nothing,
precs = DEFAULT_PRECS,
step_limiter! = OrdinaryDiffEq.trivial_limiter!)
Rosenbrock-Wanner-W(olfbrandt) Method. Variant of Ropdas5P with additional residual control.
Keyword Arguments
standardtag
: Specifies whether to use package-specific tags instead of the ForwardDiff default function-specific tags. For more information, see this blog post. Defaults toVal{true}()
.autodiff
: Uses ADTypes.jl to specify whether to use automatic differentiation via ForwardDiff.jl or finite differencing via FiniteDiff.jl. Defaults toAutoForwardDiff()
for automatic differentiation, which by default useschunksize = 0
, and thus uses the internal ForwardDiff.jl algorithm for the choice. To useFiniteDiff.jl
, theAutoFiniteDiff()
ADType can be used, which has a keyword argumentfdtype
with default valueVal{:forward}()
, and alternativesVal{:central}()
andVal{:complex}()
.concrete_jac
: Specifies whether a Jacobian should be constructed. Defaults tonothing
, which means it will be chosen true/false depending on circumstances of the solver, such as whether a Krylov subspace method is used forlinsolve
.linsolve
: Any LinearSolve.jl compatible linear solver. For example, to use KLU.jl, specifyRodas5Pr(linsolve = KLUFactorization()
). Whennothing
is passed, usesDefaultLinearSolver
.precs
: Any LinearSolve.jl-compatible preconditioner can be used as a left or right preconditioner. Preconditioners are specified by thePl,Pr = precs(W,du,u,p,t,newW,Plprev,Prprev,solverdata)
function where the arguments are defined as:W
: the current Jacobian of the nonlinear system. Specified as either $I - \gamma J$ or $I/\gamma - J$ depending on the algorithm. This will commonly be aWOperator
type defined by OrdinaryDiffEq.jl. It is a lazy representation of the operator. Users can construct the W-matrix on demand by callingconvert(AbstractMatrix,W)
to receive anAbstractMatrix
matching thejac_prototype
.du
: the current ODE derivativeu
: the current ODE statep
: the ODE parameterst
: the current ODE timenewW
: aBool
which specifies whether theW
matrix has been updated since the last call toprecs
. It is recommended that this is checked to only update the preconditioner whennewW == true
.Plprev
: the previousPl
.Prprev
: the previousPr
.solverdata
: Optional extra data the solvers can give to theprecs
function. Solver-dependent and subject to change.
(Pl,Pr)
of the LinearSolve.jl-compatible preconditioners. To specify one-sided preconditioning, simply returnnothing
for the preconditioner which is not used. Additionally,precs
must supply the dispatch:
which is used in the solver setup phase to construct the integrator type with the preconditionersPl, Pr = precs(W, du, u, p, t, ::Nothing, ::Nothing, ::Nothing, solverdata)
(Pl,Pr)
. The default isprecs=DEFAULT_PRECS
where the default preconditioner function is defined as:DEFAULT_PRECS(W, du, u, p, t, newW, Plprev, Prprev, solverdata) = nothing, nothing
step_limiter!
: function of the formlimiter!(u, integrator, p, t)
References
- Steinebach G. Rosenbrock methods within OrdinaryDiffEq.jl - Overview, recent developments and applications - Preprint 2024 https://github.com/hbrs-cse/RosenbrockMethods/blob/main/paper/JuliaPaper.pdf
OrdinaryDiffEqRosenbrock.RosenbrockW6S4OS
— TypeRosenbrockW6S4OS(; chunk_size = Val{0}(),
standardtag = Val{true}(),
autodiff = AutoForwardDiff(),
concrete_jac = nothing,
diff_type = Val{:forward}(),
linsolve = nothing,
precs = DEFAULT_PRECS)
Rosenbrock-Wanner-W(olfbrandt) Method. A 4th order L-stable Rosenbrock-W method (fixed step only).
Keyword Arguments
standardtag
: Specifies whether to use package-specific tags instead of the ForwardDiff default function-specific tags. For more information, see this blog post. Defaults toVal{true}()
.autodiff
: Uses ADTypes.jl to specify whether to use automatic differentiation via ForwardDiff.jl or finite differencing via FiniteDiff.jl. Defaults toAutoForwardDiff()
for automatic differentiation, which by default useschunksize = 0
, and thus uses the internal ForwardDiff.jl algorithm for the choice. To useFiniteDiff.jl
, theAutoFiniteDiff()
ADType can be used, which has a keyword argumentfdtype
with default valueVal{:forward}()
, and alternativesVal{:central}()
andVal{:complex}()
.concrete_jac
: Specifies whether a Jacobian should be constructed. Defaults tonothing
, which means it will be chosen true/false depending on circumstances of the solver, such as whether a Krylov subspace method is used forlinsolve
.linsolve
: Any LinearSolve.jl compatible linear solver. For example, to use KLU.jl, specifyRosenbrockW6S4OS(linsolve = KLUFactorization()
). Whennothing
is passed, usesDefaultLinearSolver
.precs
: Any LinearSolve.jl-compatible preconditioner can be used as a left or right preconditioner. Preconditioners are specified by thePl,Pr = precs(W,du,u,p,t,newW,Plprev,Prprev,solverdata)
function where the arguments are defined as:W
: the current Jacobian of the nonlinear system. Specified as either $I - \gamma J$ or $I/\gamma - J$ depending on the algorithm. This will commonly be aWOperator
type defined by OrdinaryDiffEq.jl. It is a lazy representation of the operator. Users can construct the W-matrix on demand by callingconvert(AbstractMatrix,W)
to receive anAbstractMatrix
matching thejac_prototype
.du
: the current ODE derivativeu
: the current ODE statep
: the ODE parameterst
: the current ODE timenewW
: aBool
which specifies whether theW
matrix has been updated since the last call toprecs
. It is recommended that this is checked to only update the preconditioner whennewW == true
.Plprev
: the previousPl
.Prprev
: the previousPr
.solverdata
: Optional extra data the solvers can give to theprecs
function. Solver-dependent and subject to change.
(Pl,Pr)
of the LinearSolve.jl-compatible preconditioners. To specify one-sided preconditioning, simply returnnothing
for the preconditioner which is not used. Additionally,precs
must supply the dispatch:
which is used in the solver setup phase to construct the integrator type with the preconditionersPl, Pr = precs(W, du, u, p, t, ::Nothing, ::Nothing, ::Nothing, solverdata)
(Pl,Pr)
. The default isprecs=DEFAULT_PRECS
where the default preconditioner function is defined as:DEFAULT_PRECS(W, du, u, p, t, newW, Plprev, Prprev, solverdata) = nothing, nothing
References
https://doi.org/10.1016/j.cam.2009.09.017
OrdinaryDiffEqRosenbrock.ROS2
— TypeROS2(; - `standardtag`: Specifies whether to use package-specific tags instead of the
ForwardDiff default function-specific tags. For more information, see
[this blog post](https://www.stochasticlifestyle.com/improved-forwarddiff-jl-stacktraces-with-package-tags/).
Defaults to `Val{true}()`.
- `autodiff`: Uses [ADTypes.jl](https://sciml.github.io/ADTypes.jl/stable/)
to specify whether to use automatic differentiation via
[ForwardDiff.jl](https://github.com/JuliaDiff/ForwardDiff.jl) or finite
differencing via [FiniteDiff.jl](https://github.com/JuliaDiff/FiniteDiff.jl).
Defaults to `AutoForwardDiff()` for automatic differentiation, which by default uses
`chunksize = 0`, and thus uses the internal ForwardDiff.jl algorithm for the choice.
To use `FiniteDiff.jl`, the `AutoFiniteDiff()` ADType can be used, which has a keyword argument
`fdtype` with default value `Val{:forward}()`, and alternatives `Val{:central}()` and `Val{:complex}()`.
- `concrete_jac`: Specifies whether a Jacobian should be constructed. Defaults to
`nothing`, which means it will be chosen true/false depending on circumstances
of the solver, such as whether a Krylov subspace method is used for `linsolve`.
- `linsolve`: Any [LinearSolve.jl](https://github.com/SciML/LinearSolve.jl) compatible linear solver.
For example, to use [KLU.jl](https://github.com/JuliaSparse/KLU.jl), specify
`ROS2(linsolve = KLUFactorization()`).
When `nothing` is passed, uses `DefaultLinearSolver`.
- `precs`: Any [LinearSolve.jl-compatible preconditioner](https://docs.sciml.ai/LinearSolve/stable/basics/Preconditioners/)
can be used as a left or right preconditioner.
Preconditioners are specified by the `Pl,Pr = precs(W,du,u,p,t,newW,Plprev,Prprev,solverdata)`
function where the arguments are defined as:
- `W`: the current Jacobian of the nonlinear system. Specified as either
``I - \gamma J`` or ``I/\gamma - J`` depending on the algorithm. This will
commonly be a `WOperator` type defined by OrdinaryDiffEq.jl. It is a lazy
representation of the operator. Users can construct the W-matrix on demand
by calling `convert(AbstractMatrix,W)` to receive an `AbstractMatrix` matching
the `jac_prototype`.
- `du`: the current ODE derivative
- `u`: the current ODE state
- `p`: the ODE parameters
- `t`: the current ODE time
- `newW`: a `Bool` which specifies whether the `W` matrix has been updated since
the last call to `precs`. It is recommended that this is checked to only
update the preconditioner when `newW == true`.
- `Plprev`: the previous `Pl`.
- `Prprev`: the previous `Pr`.
- `solverdata`: Optional extra data the solvers can give to the `precs` function.
Solver-dependent and subject to change.
The return is a tuple `(Pl,Pr)` of the LinearSolve.jl-compatible preconditioners.
To specify one-sided preconditioning, simply return `nothing` for the preconditioner
which is not used. Additionally, `precs` must supply the dispatch:
```julia
Pl, Pr = precs(W, du, u, p, t, ::Nothing, ::Nothing, ::Nothing, solverdata)
```
which is used in the solver setup phase to construct the integrator
type with the preconditioners `(Pl,Pr)`.
The default is `precs=DEFAULT_PRECS` where the default preconditioner function
is defined as:
```julia
DEFAULT_PRECS(W, du, u, p, t, newW, Plprev, Prprev, solverdata) = nothing, nothing
```)
Rosenbrock-Wanner Method. A 2nd order L-stable Rosenbrock method with 2 internal stages.
Keyword Arguments
chunk_size
: TBDstandardtag
: TBDautodiff
: boolean to control if the Jacobian should be computed via AD or notconcrete_jac
: function of the formjac!(J, u, p, t)
diff_type
: TBDlinsolve
: custom solver for the inner linear systemsprecs
: custom preconditioner for the inner linear solver
References
- J. G. Verwer et al. (1999): A second-order Rosenbrock method applied to photochemical dispersion problems https://doi.org/10.1137/S1064827597326651
OrdinaryDiffEqRosenbrock.ROS2PR
— TypeROS2PR(; - `standardtag`: Specifies whether to use package-specific tags instead of the
ForwardDiff default function-specific tags. For more information, see
[this blog post](https://www.stochasticlifestyle.com/improved-forwarddiff-jl-stacktraces-with-package-tags/).
Defaults to `Val{true}()`.
- `autodiff`: Uses [ADTypes.jl](https://sciml.github.io/ADTypes.jl/stable/)
to specify whether to use automatic differentiation via
[ForwardDiff.jl](https://github.com/JuliaDiff/ForwardDiff.jl) or finite
differencing via [FiniteDiff.jl](https://github.com/JuliaDiff/FiniteDiff.jl).
Defaults to `AutoForwardDiff()` for automatic differentiation, which by default uses
`chunksize = 0`, and thus uses the internal ForwardDiff.jl algorithm for the choice.
To use `FiniteDiff.jl`, the `AutoFiniteDiff()` ADType can be used, which has a keyword argument
`fdtype` with default value `Val{:forward}()`, and alternatives `Val{:central}()` and `Val{:complex}()`.
- `concrete_jac`: Specifies whether a Jacobian should be constructed. Defaults to
`nothing`, which means it will be chosen true/false depending on circumstances
of the solver, such as whether a Krylov subspace method is used for `linsolve`.
- `linsolve`: Any [LinearSolve.jl](https://github.com/SciML/LinearSolve.jl) compatible linear solver.
For example, to use [KLU.jl](https://github.com/JuliaSparse/KLU.jl), specify
`ROS2PR(linsolve = KLUFactorization()`).
When `nothing` is passed, uses `DefaultLinearSolver`.
- `precs`: Any [LinearSolve.jl-compatible preconditioner](https://docs.sciml.ai/LinearSolve/stable/basics/Preconditioners/)
can be used as a left or right preconditioner.
Preconditioners are specified by the `Pl,Pr = precs(W,du,u,p,t,newW,Plprev,Prprev,solverdata)`
function where the arguments are defined as:
- `W`: the current Jacobian of the nonlinear system. Specified as either
``I - \gamma J`` or ``I/\gamma - J`` depending on the algorithm. This will
commonly be a `WOperator` type defined by OrdinaryDiffEq.jl. It is a lazy
representation of the operator. Users can construct the W-matrix on demand
by calling `convert(AbstractMatrix,W)` to receive an `AbstractMatrix` matching
the `jac_prototype`.
- `du`: the current ODE derivative
- `u`: the current ODE state
- `p`: the ODE parameters
- `t`: the current ODE time
- `newW`: a `Bool` which specifies whether the `W` matrix has been updated since
the last call to `precs`. It is recommended that this is checked to only
update the preconditioner when `newW == true`.
- `Plprev`: the previous `Pl`.
- `Prprev`: the previous `Pr`.
- `solverdata`: Optional extra data the solvers can give to the `precs` function.
Solver-dependent and subject to change.
The return is a tuple `(Pl,Pr)` of the LinearSolve.jl-compatible preconditioners.
To specify one-sided preconditioning, simply return `nothing` for the preconditioner
which is not used. Additionally, `precs` must supply the dispatch:
```julia
Pl, Pr = precs(W, du, u, p, t, ::Nothing, ::Nothing, ::Nothing, solverdata)
```
which is used in the solver setup phase to construct the integrator
type with the preconditioners `(Pl,Pr)`.
The default is `precs=DEFAULT_PRECS` where the default preconditioner function
is defined as:
```julia
DEFAULT_PRECS(W, du, u, p, t, newW, Plprev, Prprev, solverdata) = nothing, nothing
```)
Rosenbrock-Wanner Method. 2nd order stiffly accurate Rosenbrock method with 3 internal stages with (Rinf=0). For problems with medium stiffness the convergence behaviour is very poor and it is recommended to use ROS2S
instead.
Keyword Arguments
chunk_size
: TBDstandardtag
: TBDautodiff
: boolean to control if the Jacobian should be computed via AD or notconcrete_jac
: function of the formjac!(J, u, p, t)
diff_type
: TBDlinsolve
: custom solver for the inner linear systemsprecs
: custom preconditioner for the inner linear solver
References
- Rang, Joachim (2014): The Prothero and Robinson example: Convergence studies for Runge-Kutta and Rosenbrock-Wanner methods. https://doi.org/10.24355/dbbs.084-201408121139-0
OrdinaryDiffEqRosenbrock.ROS2S
— TypeROS2S(; chunk_size = Val{0}(),
standardtag = Val{true}(),
autodiff = AutoForwardDiff(),
concrete_jac = nothing,
diff_type = Val{:forward}(),
linsolve = nothing,
precs = DEFAULT_PRECS)
Rosenbrock-Wanner-W(olfbrandt) Method. 2nd order stiffly accurate Rosenbrock-Wanner W-method with 3 internal stages with B_PR consistent of order 2 with (Rinf=0).
Keyword Arguments
standardtag
: Specifies whether to use package-specific tags instead of the ForwardDiff default function-specific tags. For more information, see this blog post. Defaults toVal{true}()
.autodiff
: Uses ADTypes.jl to specify whether to use automatic differentiation via ForwardDiff.jl or finite differencing via FiniteDiff.jl. Defaults toAutoForwardDiff()
for automatic differentiation, which by default useschunksize = 0
, and thus uses the internal ForwardDiff.jl algorithm for the choice. To useFiniteDiff.jl
, theAutoFiniteDiff()
ADType can be used, which has a keyword argumentfdtype
with default valueVal{:forward}()
, and alternativesVal{:central}()
andVal{:complex}()
.concrete_jac
: Specifies whether a Jacobian should be constructed. Defaults tonothing
, which means it will be chosen true/false depending on circumstances of the solver, such as whether a Krylov subspace method is used forlinsolve
.linsolve
: Any LinearSolve.jl compatible linear solver. For example, to use KLU.jl, specifyROS2S(linsolve = KLUFactorization()
). Whennothing
is passed, usesDefaultLinearSolver
.precs
: Any LinearSolve.jl-compatible preconditioner can be used as a left or right preconditioner. Preconditioners are specified by thePl,Pr = precs(W,du,u,p,t,newW,Plprev,Prprev,solverdata)
function where the arguments are defined as:W
: the current Jacobian of the nonlinear system. Specified as either $I - \gamma J$ or $I/\gamma - J$ depending on the algorithm. This will commonly be aWOperator
type defined by OrdinaryDiffEq.jl. It is a lazy representation of the operator. Users can construct the W-matrix on demand by callingconvert(AbstractMatrix,W)
to receive anAbstractMatrix
matching thejac_prototype
.du
: the current ODE derivativeu
: the current ODE statep
: the ODE parameterst
: the current ODE timenewW
: aBool
which specifies whether theW
matrix has been updated since the last call toprecs
. It is recommended that this is checked to only update the preconditioner whennewW == true
.Plprev
: the previousPl
.Prprev
: the previousPr
.solverdata
: Optional extra data the solvers can give to theprecs
function. Solver-dependent and subject to change.
(Pl,Pr)
of the LinearSolve.jl-compatible preconditioners. To specify one-sided preconditioning, simply returnnothing
for the preconditioner which is not used. Additionally,precs
must supply the dispatch:
which is used in the solver setup phase to construct the integrator type with the preconditionersPl, Pr = precs(W, du, u, p, t, ::Nothing, ::Nothing, ::Nothing, solverdata)
(Pl,Pr)
. The default isprecs=DEFAULT_PRECS
where the default preconditioner function is defined as:DEFAULT_PRECS(W, du, u, p, t, newW, Plprev, Prprev, solverdata) = nothing, nothing
References
- Rang, Joachim (2014): The Prothero and Robinson example: Convergence studies for Runge-Kutta and Rosenbrock-Wanner methods. https://doi.org/10.24355/dbbs.084-201408121139-0
OrdinaryDiffEqRosenbrock.ROS3
— TypeROS3(; - `standardtag`: Specifies whether to use package-specific tags instead of the
ForwardDiff default function-specific tags. For more information, see
[this blog post](https://www.stochasticlifestyle.com/improved-forwarddiff-jl-stacktraces-with-package-tags/).
Defaults to `Val{true}()`.
- `autodiff`: Uses [ADTypes.jl](https://sciml.github.io/ADTypes.jl/stable/)
to specify whether to use automatic differentiation via
[ForwardDiff.jl](https://github.com/JuliaDiff/ForwardDiff.jl) or finite
differencing via [FiniteDiff.jl](https://github.com/JuliaDiff/FiniteDiff.jl).
Defaults to `AutoForwardDiff()` for automatic differentiation, which by default uses
`chunksize = 0`, and thus uses the internal ForwardDiff.jl algorithm for the choice.
To use `FiniteDiff.jl`, the `AutoFiniteDiff()` ADType can be used, which has a keyword argument
`fdtype` with default value `Val{:forward}()`, and alternatives `Val{:central}()` and `Val{:complex}()`.
- `concrete_jac`: Specifies whether a Jacobian should be constructed. Defaults to
`nothing`, which means it will be chosen true/false depending on circumstances
of the solver, such as whether a Krylov subspace method is used for `linsolve`.
- `linsolve`: Any [LinearSolve.jl](https://github.com/SciML/LinearSolve.jl) compatible linear solver.
For example, to use [KLU.jl](https://github.com/JuliaSparse/KLU.jl), specify
`ROS3(linsolve = KLUFactorization()`).
When `nothing` is passed, uses `DefaultLinearSolver`.
- `precs`: Any [LinearSolve.jl-compatible preconditioner](https://docs.sciml.ai/LinearSolve/stable/basics/Preconditioners/)
can be used as a left or right preconditioner.
Preconditioners are specified by the `Pl,Pr = precs(W,du,u,p,t,newW,Plprev,Prprev,solverdata)`
function where the arguments are defined as:
- `W`: the current Jacobian of the nonlinear system. Specified as either
``I - \gamma J`` or ``I/\gamma - J`` depending on the algorithm. This will
commonly be a `WOperator` type defined by OrdinaryDiffEq.jl. It is a lazy
representation of the operator. Users can construct the W-matrix on demand
by calling `convert(AbstractMatrix,W)` to receive an `AbstractMatrix` matching
the `jac_prototype`.
- `du`: the current ODE derivative
- `u`: the current ODE state
- `p`: the ODE parameters
- `t`: the current ODE time
- `newW`: a `Bool` which specifies whether the `W` matrix has been updated since
the last call to `precs`. It is recommended that this is checked to only
update the preconditioner when `newW == true`.
- `Plprev`: the previous `Pl`.
- `Prprev`: the previous `Pr`.
- `solverdata`: Optional extra data the solvers can give to the `precs` function.
Solver-dependent and subject to change.
The return is a tuple `(Pl,Pr)` of the LinearSolve.jl-compatible preconditioners.
To specify one-sided preconditioning, simply return `nothing` for the preconditioner
which is not used. Additionally, `precs` must supply the dispatch:
```julia
Pl, Pr = precs(W, du, u, p, t, ::Nothing, ::Nothing, ::Nothing, solverdata)
```
which is used in the solver setup phase to construct the integrator
type with the preconditioners `(Pl,Pr)`.
The default is `precs=DEFAULT_PRECS` where the default preconditioner function
is defined as:
```julia
DEFAULT_PRECS(W, du, u, p, t, newW, Plprev, Prprev, solverdata) = nothing, nothing
```)
Rosenbrock-Wanner Method. 3rd order L-stable Rosenbrock method with 3 internal stages with an embedded strongly A-stable 2nd order method.
Keyword Arguments
chunk_size
: TBDstandardtag
: TBDautodiff
: boolean to control if the Jacobian should be computed via AD or notconcrete_jac
: function of the formjac!(J, u, p, t)
diff_type
: TBDlinsolve
: custom solver for the inner linear systemsprecs
: custom preconditioner for the inner linear solver
References
- E. Hairer, G. Wanner, Solving ordinary differential equations II, stiff and differential-algebraic problems. Computational mathematics (2nd revised ed.), Springer (1996)
OrdinaryDiffEqRosenbrock.ROS3PR
— TypeROS3PR(; - `standardtag`: Specifies whether to use package-specific tags instead of the
ForwardDiff default function-specific tags. For more information, see
[this blog post](https://www.stochasticlifestyle.com/improved-forwarddiff-jl-stacktraces-with-package-tags/).
Defaults to `Val{true}()`.
- `autodiff`: Uses [ADTypes.jl](https://sciml.github.io/ADTypes.jl/stable/)
to specify whether to use automatic differentiation via
[ForwardDiff.jl](https://github.com/JuliaDiff/ForwardDiff.jl) or finite
differencing via [FiniteDiff.jl](https://github.com/JuliaDiff/FiniteDiff.jl).
Defaults to `AutoForwardDiff()` for automatic differentiation, which by default uses
`chunksize = 0`, and thus uses the internal ForwardDiff.jl algorithm for the choice.
To use `FiniteDiff.jl`, the `AutoFiniteDiff()` ADType can be used, which has a keyword argument
`fdtype` with default value `Val{:forward}()`, and alternatives `Val{:central}()` and `Val{:complex}()`.
- `concrete_jac`: Specifies whether a Jacobian should be constructed. Defaults to
`nothing`, which means it will be chosen true/false depending on circumstances
of the solver, such as whether a Krylov subspace method is used for `linsolve`.
- `linsolve`: Any [LinearSolve.jl](https://github.com/SciML/LinearSolve.jl) compatible linear solver.
For example, to use [KLU.jl](https://github.com/JuliaSparse/KLU.jl), specify
`ROS3PR(linsolve = KLUFactorization()`).
When `nothing` is passed, uses `DefaultLinearSolver`.
- `precs`: Any [LinearSolve.jl-compatible preconditioner](https://docs.sciml.ai/LinearSolve/stable/basics/Preconditioners/)
can be used as a left or right preconditioner.
Preconditioners are specified by the `Pl,Pr = precs(W,du,u,p,t,newW,Plprev,Prprev,solverdata)`
function where the arguments are defined as:
- `W`: the current Jacobian of the nonlinear system. Specified as either
``I - \gamma J`` or ``I/\gamma - J`` depending on the algorithm. This will
commonly be a `WOperator` type defined by OrdinaryDiffEq.jl. It is a lazy
representation of the operator. Users can construct the W-matrix on demand
by calling `convert(AbstractMatrix,W)` to receive an `AbstractMatrix` matching
the `jac_prototype`.
- `du`: the current ODE derivative
- `u`: the current ODE state
- `p`: the ODE parameters
- `t`: the current ODE time
- `newW`: a `Bool` which specifies whether the `W` matrix has been updated since
the last call to `precs`. It is recommended that this is checked to only
update the preconditioner when `newW == true`.
- `Plprev`: the previous `Pl`.
- `Prprev`: the previous `Pr`.
- `solverdata`: Optional extra data the solvers can give to the `precs` function.
Solver-dependent and subject to change.
The return is a tuple `(Pl,Pr)` of the LinearSolve.jl-compatible preconditioners.
To specify one-sided preconditioning, simply return `nothing` for the preconditioner
which is not used. Additionally, `precs` must supply the dispatch:
```julia
Pl, Pr = precs(W, du, u, p, t, ::Nothing, ::Nothing, ::Nothing, solverdata)
```
which is used in the solver setup phase to construct the integrator
type with the preconditioners `(Pl,Pr)`.
The default is `precs=DEFAULT_PRECS` where the default preconditioner function
is defined as:
```julia
DEFAULT_PRECS(W, du, u, p, t, newW, Plprev, Prprev, solverdata) = nothing, nothing
```)
Rosenbrock-Wanner Method. 3nd order stiffly accurate Rosenbrock method with 3 internal stages with B_PR consistent of order 3, which is strongly A-stable with Rinf~=-0.73.
Keyword Arguments
chunk_size
: TBDstandardtag
: TBDautodiff
: boolean to control if the Jacobian should be computed via AD or notconcrete_jac
: function of the formjac!(J, u, p, t)
diff_type
: TBDlinsolve
: custom solver for the inner linear systemsprecs
: custom preconditioner for the inner linear solver
References
- Rang, Joachim (2014): The Prothero and Robinson example: Convergence studies for Runge-Kutta and Rosenbrock-Wanner methods. https://doi.org/10.24355/dbbs.084-201408121139-0
OrdinaryDiffEqRosenbrock.Scholz4_7
— TypeScholz4_7(; - `standardtag`: Specifies whether to use package-specific tags instead of the
ForwardDiff default function-specific tags. For more information, see
[this blog post](https://www.stochasticlifestyle.com/improved-forwarddiff-jl-stacktraces-with-package-tags/).
Defaults to `Val{true}()`.
- `autodiff`: Uses [ADTypes.jl](https://sciml.github.io/ADTypes.jl/stable/)
to specify whether to use automatic differentiation via
[ForwardDiff.jl](https://github.com/JuliaDiff/ForwardDiff.jl) or finite
differencing via [FiniteDiff.jl](https://github.com/JuliaDiff/FiniteDiff.jl).
Defaults to `AutoForwardDiff()` for automatic differentiation, which by default uses
`chunksize = 0`, and thus uses the internal ForwardDiff.jl algorithm for the choice.
To use `FiniteDiff.jl`, the `AutoFiniteDiff()` ADType can be used, which has a keyword argument
`fdtype` with default value `Val{:forward}()`, and alternatives `Val{:central}()` and `Val{:complex}()`.
- `concrete_jac`: Specifies whether a Jacobian should be constructed. Defaults to
`nothing`, which means it will be chosen true/false depending on circumstances
of the solver, such as whether a Krylov subspace method is used for `linsolve`.
- `linsolve`: Any [LinearSolve.jl](https://github.com/SciML/LinearSolve.jl) compatible linear solver.
For example, to use [KLU.jl](https://github.com/JuliaSparse/KLU.jl), specify
`Scholz4_7(linsolve = KLUFactorization()`).
When `nothing` is passed, uses `DefaultLinearSolver`.
- `precs`: Any [LinearSolve.jl-compatible preconditioner](https://docs.sciml.ai/LinearSolve/stable/basics/Preconditioners/)
can be used as a left or right preconditioner.
Preconditioners are specified by the `Pl,Pr = precs(W,du,u,p,t,newW,Plprev,Prprev,solverdata)`
function where the arguments are defined as:
- `W`: the current Jacobian of the nonlinear system. Specified as either
``I - \gamma J`` or ``I/\gamma - J`` depending on the algorithm. This will
commonly be a `WOperator` type defined by OrdinaryDiffEq.jl. It is a lazy
representation of the operator. Users can construct the W-matrix on demand
by calling `convert(AbstractMatrix,W)` to receive an `AbstractMatrix` matching
the `jac_prototype`.
- `du`: the current ODE derivative
- `u`: the current ODE state
- `p`: the ODE parameters
- `t`: the current ODE time
- `newW`: a `Bool` which specifies whether the `W` matrix has been updated since
the last call to `precs`. It is recommended that this is checked to only
update the preconditioner when `newW == true`.
- `Plprev`: the previous `Pl`.
- `Prprev`: the previous `Pr`.
- `solverdata`: Optional extra data the solvers can give to the `precs` function.
Solver-dependent and subject to change.
The return is a tuple `(Pl,Pr)` of the LinearSolve.jl-compatible preconditioners.
To specify one-sided preconditioning, simply return `nothing` for the preconditioner
which is not used. Additionally, `precs` must supply the dispatch:
```julia
Pl, Pr = precs(W, du, u, p, t, ::Nothing, ::Nothing, ::Nothing, solverdata)
```
which is used in the solver setup phase to construct the integrator
type with the preconditioners `(Pl,Pr)`.
The default is `precs=DEFAULT_PRECS` where the default preconditioner function
is defined as:
```julia
DEFAULT_PRECS(W, du, u, p, t, newW, Plprev, Prprev, solverdata) = nothing, nothing
```)
Rosenbrock-Wanner Method. 3nd order stiffly accurate Rosenbrock method with 3 internal stages with B_PR consistent of order 3, which is strongly A-stable with Rinf~=-0.73. Convergence with order 4 for the stiff case, but has a poor accuracy.
Keyword Arguments
chunk_size
: TBDstandardtag
: TBDautodiff
: boolean to control if the Jacobian should be computed via AD or notconcrete_jac
: function of the formjac!(J, u, p, t)
diff_type
: TBDlinsolve
: custom solver for the inner linear systemsprecs
: custom preconditioner for the inner linear solver
References
- Rang, Joachim (2014): The Prothero and Robinson example: Convergence studies for Runge-Kutta and Rosenbrock-Wanner methods. https://doi.org/10.24355/dbbs.084-201408121139-0
OrdinaryDiffEqRosenbrock.ROS34PW1a
— TypeROS34PW1a(; chunk_size = Val{0}(),
standardtag = Val{true}(),
autodiff = AutoForwardDiff(),
concrete_jac = nothing,
diff_type = Val{:forward}(),
linsolve = nothing,
precs = DEFAULT_PRECS)
Rosenbrock-Wanner-W(olfbrandt) Method. A 4th order L-stable Rosenbrock-W method.
Keyword Arguments
standardtag
: Specifies whether to use package-specific tags instead of the ForwardDiff default function-specific tags. For more information, see this blog post. Defaults toVal{true}()
.autodiff
: Uses ADTypes.jl to specify whether to use automatic differentiation via ForwardDiff.jl or finite differencing via FiniteDiff.jl. Defaults toAutoForwardDiff()
for automatic differentiation, which by default useschunksize = 0
, and thus uses the internal ForwardDiff.jl algorithm for the choice. To useFiniteDiff.jl
, theAutoFiniteDiff()
ADType can be used, which has a keyword argumentfdtype
with default valueVal{:forward}()
, and alternativesVal{:central}()
andVal{:complex}()
.concrete_jac
: Specifies whether a Jacobian should be constructed. Defaults tonothing
, which means it will be chosen true/false depending on circumstances of the solver, such as whether a Krylov subspace method is used forlinsolve
.linsolve
: Any LinearSolve.jl compatible linear solver. For example, to use KLU.jl, specifyROS34PW1a(linsolve = KLUFactorization()
). Whennothing
is passed, usesDefaultLinearSolver
.precs
: Any LinearSolve.jl-compatible preconditioner can be used as a left or right preconditioner. Preconditioners are specified by thePl,Pr = precs(W,du,u,p,t,newW,Plprev,Prprev,solverdata)
function where the arguments are defined as:W
: the current Jacobian of the nonlinear system. Specified as either $I - \gamma J$ or $I/\gamma - J$ depending on the algorithm. This will commonly be aWOperator
type defined by OrdinaryDiffEq.jl. It is a lazy representation of the operator. Users can construct the W-matrix on demand by callingconvert(AbstractMatrix,W)
to receive anAbstractMatrix
matching thejac_prototype
.du
: the current ODE derivativeu
: the current ODE statep
: the ODE parameterst
: the current ODE timenewW
: aBool
which specifies whether theW
matrix has been updated since the last call toprecs
. It is recommended that this is checked to only update the preconditioner whennewW == true
.Plprev
: the previousPl
.Prprev
: the previousPr
.solverdata
: Optional extra data the solvers can give to theprecs
function. Solver-dependent and subject to change.
(Pl,Pr)
of the LinearSolve.jl-compatible preconditioners. To specify one-sided preconditioning, simply returnnothing
for the preconditioner which is not used. Additionally,precs
must supply the dispatch:
which is used in the solver setup phase to construct the integrator type with the preconditionersPl, Pr = precs(W, du, u, p, t, ::Nothing, ::Nothing, ::Nothing, solverdata)
(Pl,Pr)
. The default isprecs=DEFAULT_PRECS
where the default preconditioner function is defined as:DEFAULT_PRECS(W, du, u, p, t, newW, Plprev, Prprev, solverdata) = nothing, nothing
References
@article{rang2005new, title={New Rosenbrock W-methods of order 3 for partial differential algebraic equations of index 1}, author={Rang, Joachim and Angermann, L}, journal={BIT Numerical Mathematics}, volume={45}, pages={761–787}, year={2005}, publisher={Springer}}
OrdinaryDiffEqRosenbrock.ROS34PW1b
— TypeROS34PW1b(; chunk_size = Val{0}(),
standardtag = Val{true}(),
autodiff = AutoForwardDiff(),
concrete_jac = nothing,
diff_type = Val{:forward}(),
linsolve = nothing,
precs = DEFAULT_PRECS)
Rosenbrock-Wanner-W(olfbrandt) Method. A 4th order L-stable Rosenbrock-W method.
Keyword Arguments
standardtag
: Specifies whether to use package-specific tags instead of the ForwardDiff default function-specific tags. For more information, see this blog post. Defaults toVal{true}()
.autodiff
: Uses ADTypes.jl to specify whether to use automatic differentiation via ForwardDiff.jl or finite differencing via FiniteDiff.jl. Defaults toAutoForwardDiff()
for automatic differentiation, which by default useschunksize = 0
, and thus uses the internal ForwardDiff.jl algorithm for the choice. To useFiniteDiff.jl
, theAutoFiniteDiff()
ADType can be used, which has a keyword argumentfdtype
with default valueVal{:forward}()
, and alternativesVal{:central}()
andVal{:complex}()
.concrete_jac
: Specifies whether a Jacobian should be constructed. Defaults tonothing
, which means it will be chosen true/false depending on circumstances of the solver, such as whether a Krylov subspace method is used forlinsolve
.linsolve
: Any LinearSolve.jl compatible linear solver. For example, to use KLU.jl, specifyROS34PW1b(linsolve = KLUFactorization()
). Whennothing
is passed, usesDefaultLinearSolver
.precs
: Any LinearSolve.jl-compatible preconditioner can be used as a left or right preconditioner. Preconditioners are specified by thePl,Pr = precs(W,du,u,p,t,newW,Plprev,Prprev,solverdata)
function where the arguments are defined as:W
: the current Jacobian of the nonlinear system. Specified as either $I - \gamma J$ or $I/\gamma - J$ depending on the algorithm. This will commonly be aWOperator
type defined by OrdinaryDiffEq.jl. It is a lazy representation of the operator. Users can construct the W-matrix on demand by callingconvert(AbstractMatrix,W)
to receive anAbstractMatrix
matching thejac_prototype
.du
: the current ODE derivativeu
: the current ODE statep
: the ODE parameterst
: the current ODE timenewW
: aBool
which specifies whether theW
matrix has been updated since the last call toprecs
. It is recommended that this is checked to only update the preconditioner whennewW == true
.Plprev
: the previousPl
.Prprev
: the previousPr
.solverdata
: Optional extra data the solvers can give to theprecs
function. Solver-dependent and subject to change.
(Pl,Pr)
of the LinearSolve.jl-compatible preconditioners. To specify one-sided preconditioning, simply returnnothing
for the preconditioner which is not used. Additionally,precs
must supply the dispatch:
which is used in the solver setup phase to construct the integrator type with the preconditionersPl, Pr = precs(W, du, u, p, t, ::Nothing, ::Nothing, ::Nothing, solverdata)
(Pl,Pr)
. The default isprecs=DEFAULT_PRECS
where the default preconditioner function is defined as:DEFAULT_PRECS(W, du, u, p, t, newW, Plprev, Prprev, solverdata) = nothing, nothing
References
@article{rang2005new, title={New Rosenbrock W-methods of order 3 for partial differential algebraic equations of index 1}, author={Rang, Joachim and Angermann, L}, journal={BIT Numerical Mathematics}, volume={45}, pages={761–787}, year={2005}, publisher={Springer}}
OrdinaryDiffEqRosenbrock.ROS34PW2
— TypeROS34PW2(; chunk_size = Val{0}(),
standardtag = Val{true}(),
autodiff = AutoForwardDiff(),
concrete_jac = nothing,
diff_type = Val{:forward}(),
linsolve = nothing,
precs = DEFAULT_PRECS)
Rosenbrock-Wanner-W(olfbrandt) Method. A 4th order stiffy accurate Rosenbrock-W method for PDAEs.
Keyword Arguments
standardtag
: Specifies whether to use package-specific tags instead of the ForwardDiff default function-specific tags. For more information, see this blog post. Defaults toVal{true}()
.autodiff
: Uses ADTypes.jl to specify whether to use automatic differentiation via ForwardDiff.jl or finite differencing via FiniteDiff.jl. Defaults toAutoForwardDiff()
for automatic differentiation, which by default useschunksize = 0
, and thus uses the internal ForwardDiff.jl algorithm for the choice. To useFiniteDiff.jl
, theAutoFiniteDiff()
ADType can be used, which has a keyword argumentfdtype
with default valueVal{:forward}()
, and alternativesVal{:central}()
andVal{:complex}()
.concrete_jac
: Specifies whether a Jacobian should be constructed. Defaults tonothing
, which means it will be chosen true/false depending on circumstances of the solver, such as whether a Krylov subspace method is used forlinsolve
.linsolve
: Any LinearSolve.jl compatible linear solver. For example, to use KLU.jl, specifyROS34PW2(linsolve = KLUFactorization()
). Whennothing
is passed, usesDefaultLinearSolver
.precs
: Any LinearSolve.jl-compatible preconditioner can be used as a left or right preconditioner. Preconditioners are specified by thePl,Pr = precs(W,du,u,p,t,newW,Plprev,Prprev,solverdata)
function where the arguments are defined as:W
: the current Jacobian of the nonlinear system. Specified as either $I - \gamma J$ or $I/\gamma - J$ depending on the algorithm. This will commonly be aWOperator
type defined by OrdinaryDiffEq.jl. It is a lazy representation of the operator. Users can construct the W-matrix on demand by callingconvert(AbstractMatrix,W)
to receive anAbstractMatrix
matching thejac_prototype
.du
: the current ODE derivativeu
: the current ODE statep
: the ODE parameterst
: the current ODE timenewW
: aBool
which specifies whether theW
matrix has been updated since the last call toprecs
. It is recommended that this is checked to only update the preconditioner whennewW == true
.Plprev
: the previousPl
.Prprev
: the previousPr
.solverdata
: Optional extra data the solvers can give to theprecs
function. Solver-dependent and subject to change.
(Pl,Pr)
of the LinearSolve.jl-compatible preconditioners. To specify one-sided preconditioning, simply returnnothing
for the preconditioner which is not used. Additionally,precs
must supply the dispatch:
which is used in the solver setup phase to construct the integrator type with the preconditionersPl, Pr = precs(W, du, u, p, t, ::Nothing, ::Nothing, ::Nothing, solverdata)
(Pl,Pr)
. The default isprecs=DEFAULT_PRECS
where the default preconditioner function is defined as:DEFAULT_PRECS(W, du, u, p, t, newW, Plprev, Prprev, solverdata) = nothing, nothing
References
@article{rang2005new, title={New Rosenbrock W-methods of order 3 for partial differential algebraic equations of index 1}, author={Rang, Joachim and Angermann, L}, journal={BIT Numerical Mathematics}, volume={45}, pages={761–787}, year={2005}, publisher={Springer}}
OrdinaryDiffEqRosenbrock.ROS34PW3
— TypeROS34PW3(; chunk_size = Val{0}(),
standardtag = Val{true}(),
autodiff = AutoForwardDiff(),
concrete_jac = nothing,
diff_type = Val{:forward}(),
linsolve = nothing,
precs = DEFAULT_PRECS)
Rosenbrock-Wanner-W(olfbrandt) Method. A 4th order strongly A-stable (Rinf~0.63) Rosenbrock-W method.
Keyword Arguments
standardtag
: Specifies whether to use package-specific tags instead of the ForwardDiff default function-specific tags. For more information, see this blog post. Defaults toVal{true}()
.autodiff
: Uses ADTypes.jl to specify whether to use automatic differentiation via ForwardDiff.jl or finite differencing via FiniteDiff.jl. Defaults toAutoForwardDiff()
for automatic differentiation, which by default useschunksize = 0
, and thus uses the internal ForwardDiff.jl algorithm for the choice. To useFiniteDiff.jl
, theAutoFiniteDiff()
ADType can be used, which has a keyword argumentfdtype
with default valueVal{:forward}()
, and alternativesVal{:central}()
andVal{:complex}()
.concrete_jac
: Specifies whether a Jacobian should be constructed. Defaults tonothing
, which means it will be chosen true/false depending on circumstances of the solver, such as whether a Krylov subspace method is used forlinsolve
.linsolve
: Any LinearSolve.jl compatible linear solver. For example, to use KLU.jl, specifyROS34PW3(linsolve = KLUFactorization()
). Whennothing
is passed, usesDefaultLinearSolver
.precs
: Any LinearSolve.jl-compatible preconditioner can be used as a left or right preconditioner. Preconditioners are specified by thePl,Pr = precs(W,du,u,p,t,newW,Plprev,Prprev,solverdata)
function where the arguments are defined as:W
: the current Jacobian of the nonlinear system. Specified as either $I - \gamma J$ or $I/\gamma - J$ depending on the algorithm. This will commonly be aWOperator
type defined by OrdinaryDiffEq.jl. It is a lazy representation of the operator. Users can construct the W-matrix on demand by callingconvert(AbstractMatrix,W)
to receive anAbstractMatrix
matching thejac_prototype
.du
: the current ODE derivativeu
: the current ODE statep
: the ODE parameterst
: the current ODE timenewW
: aBool
which specifies whether theW
matrix has been updated since the last call toprecs
. It is recommended that this is checked to only update the preconditioner whennewW == true
.Plprev
: the previousPl
.Prprev
: the previousPr
.solverdata
: Optional extra data the solvers can give to theprecs
function. Solver-dependent and subject to change.
(Pl,Pr)
of the LinearSolve.jl-compatible preconditioners. To specify one-sided preconditioning, simply returnnothing
for the preconditioner which is not used. Additionally,precs
must supply the dispatch:
which is used in the solver setup phase to construct the integrator type with the preconditionersPl, Pr = precs(W, du, u, p, t, ::Nothing, ::Nothing, ::Nothing, solverdata)
(Pl,Pr)
. The default isprecs=DEFAULT_PRECS
where the default preconditioner function is defined as:DEFAULT_PRECS(W, du, u, p, t, newW, Plprev, Prprev, solverdata) = nothing, nothing
References
@article{rang2005new, title={New Rosenbrock W-methods of order 3 for partial differential algebraic equations of index 1}, author={Rang, Joachim and Angermann, L}, journal={BIT Numerical Mathematics}, volume={45}, pages={761–787}, year={2005}, publisher={Springer}}
OrdinaryDiffEqRosenbrock.ROS34PRw
— TypeROS34PRw(; chunk_size = Val{0}(),
standardtag = Val{true}(),
autodiff = AutoForwardDiff(),
concrete_jac = nothing,
diff_type = Val{:forward}(),
linsolve = nothing,
precs = DEFAULT_PRECS)
Rosenbrock-Wanner-W(olfbrandt) Method. 3rd order stiffly accurate Rosenbrock-Wanner W-method with 4 internal stages, B_PR consistent of order 2. The order of convergence decreases if medium stiff problems are considered.
Keyword Arguments
standardtag
: Specifies whether to use package-specific tags instead of the ForwardDiff default function-specific tags. For more information, see this blog post. Defaults toVal{true}()
.autodiff
: Uses ADTypes.jl to specify whether to use automatic differentiation via ForwardDiff.jl or finite differencing via FiniteDiff.jl. Defaults toAutoForwardDiff()
for automatic differentiation, which by default useschunksize = 0
, and thus uses the internal ForwardDiff.jl algorithm for the choice. To useFiniteDiff.jl
, theAutoFiniteDiff()
ADType can be used, which has a keyword argumentfdtype
with default valueVal{:forward}()
, and alternativesVal{:central}()
andVal{:complex}()
.concrete_jac
: Specifies whether a Jacobian should be constructed. Defaults tonothing
, which means it will be chosen true/false depending on circumstances of the solver, such as whether a Krylov subspace method is used forlinsolve
.linsolve
: Any LinearSolve.jl compatible linear solver. For example, to use KLU.jl, specifyROS34PRw(linsolve = KLUFactorization()
). Whennothing
is passed, usesDefaultLinearSolver
.precs
: Any LinearSolve.jl-compatible preconditioner can be used as a left or right preconditioner. Preconditioners are specified by thePl,Pr = precs(W,du,u,p,t,newW,Plprev,Prprev,solverdata)
function where the arguments are defined as:W
: the current Jacobian of the nonlinear system. Specified as either $I - \gamma J$ or $I/\gamma - J$ depending on the algorithm. This will commonly be aWOperator
type defined by OrdinaryDiffEq.jl. It is a lazy representation of the operator. Users can construct the W-matrix on demand by callingconvert(AbstractMatrix,W)
to receive anAbstractMatrix
matching thejac_prototype
.du
: the current ODE derivativeu
: the current ODE statep
: the ODE parameterst
: the current ODE timenewW
: aBool
which specifies whether theW
matrix has been updated since the last call toprecs
. It is recommended that this is checked to only update the preconditioner whennewW == true
.Plprev
: the previousPl
.Prprev
: the previousPr
.solverdata
: Optional extra data the solvers can give to theprecs
function. Solver-dependent and subject to change.
(Pl,Pr)
of the LinearSolve.jl-compatible preconditioners. To specify one-sided preconditioning, simply returnnothing
for the preconditioner which is not used. Additionally,precs
must supply the dispatch:
which is used in the solver setup phase to construct the integrator type with the preconditionersPl, Pr = precs(W, du, u, p, t, ::Nothing, ::Nothing, ::Nothing, solverdata)
(Pl,Pr)
. The default isprecs=DEFAULT_PRECS
where the default preconditioner function is defined as:DEFAULT_PRECS(W, du, u, p, t, newW, Plprev, Prprev, solverdata) = nothing, nothing
References
- Joachim Rang, Improved traditional Rosenbrock–Wanner methods for stiff ODEs and DAEs, Journal of Computational and Applied Mathematics, https://doi.org/10.1016/j.cam.2015.03.010
OrdinaryDiffEqRosenbrock.ROS3PRL
— TypeROS3PRL(; - `standardtag`: Specifies whether to use package-specific tags instead of the
ForwardDiff default function-specific tags. For more information, see
[this blog post](https://www.stochasticlifestyle.com/improved-forwarddiff-jl-stacktraces-with-package-tags/).
Defaults to `Val{true}()`.
- `autodiff`: Uses [ADTypes.jl](https://sciml.github.io/ADTypes.jl/stable/)
to specify whether to use automatic differentiation via
[ForwardDiff.jl](https://github.com/JuliaDiff/ForwardDiff.jl) or finite
differencing via [FiniteDiff.jl](https://github.com/JuliaDiff/FiniteDiff.jl).
Defaults to `AutoForwardDiff()` for automatic differentiation, which by default uses
`chunksize = 0`, and thus uses the internal ForwardDiff.jl algorithm for the choice.
To use `FiniteDiff.jl`, the `AutoFiniteDiff()` ADType can be used, which has a keyword argument
`fdtype` with default value `Val{:forward}()`, and alternatives `Val{:central}()` and `Val{:complex}()`.
- `concrete_jac`: Specifies whether a Jacobian should be constructed. Defaults to
`nothing`, which means it will be chosen true/false depending on circumstances
of the solver, such as whether a Krylov subspace method is used for `linsolve`.
- `linsolve`: Any [LinearSolve.jl](https://github.com/SciML/LinearSolve.jl) compatible linear solver.
For example, to use [KLU.jl](https://github.com/JuliaSparse/KLU.jl), specify
`ROS3PRL(linsolve = KLUFactorization()`).
When `nothing` is passed, uses `DefaultLinearSolver`.
- `precs`: Any [LinearSolve.jl-compatible preconditioner](https://docs.sciml.ai/LinearSolve/stable/basics/Preconditioners/)
can be used as a left or right preconditioner.
Preconditioners are specified by the `Pl,Pr = precs(W,du,u,p,t,newW,Plprev,Prprev,solverdata)`
function where the arguments are defined as:
- `W`: the current Jacobian of the nonlinear system. Specified as either
``I - \gamma J`` or ``I/\gamma - J`` depending on the algorithm. This will
commonly be a `WOperator` type defined by OrdinaryDiffEq.jl. It is a lazy
representation of the operator. Users can construct the W-matrix on demand
by calling `convert(AbstractMatrix,W)` to receive an `AbstractMatrix` matching
the `jac_prototype`.
- `du`: the current ODE derivative
- `u`: the current ODE state
- `p`: the ODE parameters
- `t`: the current ODE time
- `newW`: a `Bool` which specifies whether the `W` matrix has been updated since
the last call to `precs`. It is recommended that this is checked to only
update the preconditioner when `newW == true`.
- `Plprev`: the previous `Pl`.
- `Prprev`: the previous `Pr`.
- `solverdata`: Optional extra data the solvers can give to the `precs` function.
Solver-dependent and subject to change.
The return is a tuple `(Pl,Pr)` of the LinearSolve.jl-compatible preconditioners.
To specify one-sided preconditioning, simply return `nothing` for the preconditioner
which is not used. Additionally, `precs` must supply the dispatch:
```julia
Pl, Pr = precs(W, du, u, p, t, ::Nothing, ::Nothing, ::Nothing, solverdata)
```
which is used in the solver setup phase to construct the integrator
type with the preconditioners `(Pl,Pr)`.
The default is `precs=DEFAULT_PRECS` where the default preconditioner function
is defined as:
```julia
DEFAULT_PRECS(W, du, u, p, t, newW, Plprev, Prprev, solverdata) = nothing, nothing
```)
Rosenbrock-Wanner Method. 3rd order stiffly accurate Rosenbrock method with 4 internal stages, B_PR consistent of order 2 with Rinf=0. The order of convergence decreases if medium stiff problems are considered, but it has good results for very stiff cases.
Keyword Arguments
chunk_size
: TBDstandardtag
: TBDautodiff
: boolean to control if the Jacobian should be computed via AD or notconcrete_jac
: function of the formjac!(J, u, p, t)
diff_type
: TBDlinsolve
: custom solver for the inner linear systemsprecs
: custom preconditioner for the inner linear solver
References
- Rang, Joachim (2014): The Prothero and Robinson example: Convergence studies for Runge-Kutta and Rosenbrock-Wanner methods. https://doi.org/10.24355/dbbs.084-201408121139-0
OrdinaryDiffEqRosenbrock.ROS3PRL2
— TypeROS3PRL2(; - `standardtag`: Specifies whether to use package-specific tags instead of the
ForwardDiff default function-specific tags. For more information, see
[this blog post](https://www.stochasticlifestyle.com/improved-forwarddiff-jl-stacktraces-with-package-tags/).
Defaults to `Val{true}()`.
- `autodiff`: Uses [ADTypes.jl](https://sciml.github.io/ADTypes.jl/stable/)
to specify whether to use automatic differentiation via
[ForwardDiff.jl](https://github.com/JuliaDiff/ForwardDiff.jl) or finite
differencing via [FiniteDiff.jl](https://github.com/JuliaDiff/FiniteDiff.jl).
Defaults to `AutoForwardDiff()` for automatic differentiation, which by default uses
`chunksize = 0`, and thus uses the internal ForwardDiff.jl algorithm for the choice.
To use `FiniteDiff.jl`, the `AutoFiniteDiff()` ADType can be used, which has a keyword argument
`fdtype` with default value `Val{:forward}()`, and alternatives `Val{:central}()` and `Val{:complex}()`.
- `concrete_jac`: Specifies whether a Jacobian should be constructed. Defaults to
`nothing`, which means it will be chosen true/false depending on circumstances
of the solver, such as whether a Krylov subspace method is used for `linsolve`.
- `linsolve`: Any [LinearSolve.jl](https://github.com/SciML/LinearSolve.jl) compatible linear solver.
For example, to use [KLU.jl](https://github.com/JuliaSparse/KLU.jl), specify
`ROS3PRL2(linsolve = KLUFactorization()`).
When `nothing` is passed, uses `DefaultLinearSolver`.
- `precs`: Any [LinearSolve.jl-compatible preconditioner](https://docs.sciml.ai/LinearSolve/stable/basics/Preconditioners/)
can be used as a left or right preconditioner.
Preconditioners are specified by the `Pl,Pr = precs(W,du,u,p,t,newW,Plprev,Prprev,solverdata)`
function where the arguments are defined as:
- `W`: the current Jacobian of the nonlinear system. Specified as either
``I - \gamma J`` or ``I/\gamma - J`` depending on the algorithm. This will
commonly be a `WOperator` type defined by OrdinaryDiffEq.jl. It is a lazy
representation of the operator. Users can construct the W-matrix on demand
by calling `convert(AbstractMatrix,W)` to receive an `AbstractMatrix` matching
the `jac_prototype`.
- `du`: the current ODE derivative
- `u`: the current ODE state
- `p`: the ODE parameters
- `t`: the current ODE time
- `newW`: a `Bool` which specifies whether the `W` matrix has been updated since
the last call to `precs`. It is recommended that this is checked to only
update the preconditioner when `newW == true`.
- `Plprev`: the previous `Pl`.
- `Prprev`: the previous `Pr`.
- `solverdata`: Optional extra data the solvers can give to the `precs` function.
Solver-dependent and subject to change.
The return is a tuple `(Pl,Pr)` of the LinearSolve.jl-compatible preconditioners.
To specify one-sided preconditioning, simply return `nothing` for the preconditioner
which is not used. Additionally, `precs` must supply the dispatch:
```julia
Pl, Pr = precs(W, du, u, p, t, ::Nothing, ::Nothing, ::Nothing, solverdata)
```
which is used in the solver setup phase to construct the integrator
type with the preconditioners `(Pl,Pr)`.
The default is `precs=DEFAULT_PRECS` where the default preconditioner function
is defined as:
```julia
DEFAULT_PRECS(W, du, u, p, t, newW, Plprev, Prprev, solverdata) = nothing, nothing
```)
Rosenbrock-Wanner Method. 3rd order stiffly accurate Rosenbrock method with 4 internal stages, B_PR consistent of order 3. The order of convergence does NOT decreases if medium stiff problems are considered as it does for ROS3PRL
.
Keyword Arguments
chunk_size
: TBDstandardtag
: TBDautodiff
: boolean to control if the Jacobian should be computed via AD or notconcrete_jac
: function of the formjac!(J, u, p, t)
diff_type
: TBDlinsolve
: custom solver for the inner linear systemsprecs
: custom preconditioner for the inner linear solver
References
- Rang, Joachim (2014): The Prothero and Robinson example: Convergence studies for Runge-Kutta and Rosenbrock-Wanner methods. https://doi.org/10.24355/dbbs.084-201408121139-0
OrdinaryDiffEqRosenbrock.ROK4a
— TypeROK4a(; chunk_size = Val{0}(),
standardtag = Val{true}(),
autodiff = AutoForwardDiff(),
concrete_jac = nothing,
diff_type = Val{:forward}(),
linsolve = nothing,
precs = DEFAULT_PRECS)
Rosenbrock-Wanner-W(olfbrandt) Method. 4rd order L-stable Rosenbrock-Krylov method with 4 internal stages, with a 3rd order embedded method which is strongly A-stable with Rinf~=0.55. (when using exact Jacobians)
Keyword Arguments
standardtag
: Specifies whether to use package-specific tags instead of the ForwardDiff default function-specific tags. For more information, see this blog post. Defaults toVal{true}()
.autodiff
: Uses ADTypes.jl to specify whether to use automatic differentiation via ForwardDiff.jl or finite differencing via FiniteDiff.jl. Defaults toAutoForwardDiff()
for automatic differentiation, which by default useschunksize = 0
, and thus uses the internal ForwardDiff.jl algorithm for the choice. To useFiniteDiff.jl
, theAutoFiniteDiff()
ADType can be used, which has a keyword argumentfdtype
with default valueVal{:forward}()
, and alternativesVal{:central}()
andVal{:complex}()
.concrete_jac
: Specifies whether a Jacobian should be constructed. Defaults tonothing
, which means it will be chosen true/false depending on circumstances of the solver, such as whether a Krylov subspace method is used forlinsolve
.linsolve
: Any LinearSolve.jl compatible linear solver. For example, to use KLU.jl, specifyROK4a(linsolve = KLUFactorization()
). Whennothing
is passed, usesDefaultLinearSolver
.precs
: Any LinearSolve.jl-compatible preconditioner can be used as a left or right preconditioner. Preconditioners are specified by thePl,Pr = precs(W,du,u,p,t,newW,Plprev,Prprev,solverdata)
function where the arguments are defined as:W
: the current Jacobian of the nonlinear system. Specified as either $I - \gamma J$ or $I/\gamma - J$ depending on the algorithm. This will commonly be aWOperator
type defined by OrdinaryDiffEq.jl. It is a lazy representation of the operator. Users can construct the W-matrix on demand by callingconvert(AbstractMatrix,W)
to receive anAbstractMatrix
matching thejac_prototype
.du
: the current ODE derivativeu
: the current ODE statep
: the ODE parameterst
: the current ODE timenewW
: aBool
which specifies whether theW
matrix has been updated since the last call toprecs
. It is recommended that this is checked to only update the preconditioner whennewW == true
.Plprev
: the previousPl
.Prprev
: the previousPr
.solverdata
: Optional extra data the solvers can give to theprecs
function. Solver-dependent and subject to change.
(Pl,Pr)
of the LinearSolve.jl-compatible preconditioners. To specify one-sided preconditioning, simply returnnothing
for the preconditioner which is not used. Additionally,precs
must supply the dispatch:
which is used in the solver setup phase to construct the integrator type with the preconditionersPl, Pr = precs(W, du, u, p, t, ::Nothing, ::Nothing, ::Nothing, solverdata)
(Pl,Pr)
. The default isprecs=DEFAULT_PRECS
where the default preconditioner function is defined as:DEFAULT_PRECS(W, du, u, p, t, newW, Plprev, Prprev, solverdata) = nothing, nothing
References
- Tranquilli, Paul and Sandu, Adrian (2014): Rosenbrock–Krylov Methods for Large Systems of Differential Equations https://doi.org/10.1137/130923336
OrdinaryDiffEqRosenbrock.RosShamp4
— TypeRosShamp4(; - `standardtag`: Specifies whether to use package-specific tags instead of the
ForwardDiff default function-specific tags. For more information, see
[this blog post](https://www.stochasticlifestyle.com/improved-forwarddiff-jl-stacktraces-with-package-tags/).
Defaults to `Val{true}()`.
- `autodiff`: Uses [ADTypes.jl](https://sciml.github.io/ADTypes.jl/stable/)
to specify whether to use automatic differentiation via
[ForwardDiff.jl](https://github.com/JuliaDiff/ForwardDiff.jl) or finite
differencing via [FiniteDiff.jl](https://github.com/JuliaDiff/FiniteDiff.jl).
Defaults to `AutoForwardDiff()` for automatic differentiation, which by default uses
`chunksize = 0`, and thus uses the internal ForwardDiff.jl algorithm for the choice.
To use `FiniteDiff.jl`, the `AutoFiniteDiff()` ADType can be used, which has a keyword argument
`fdtype` with default value `Val{:forward}()`, and alternatives `Val{:central}()` and `Val{:complex}()`.
- `concrete_jac`: Specifies whether a Jacobian should be constructed. Defaults to
`nothing`, which means it will be chosen true/false depending on circumstances
of the solver, such as whether a Krylov subspace method is used for `linsolve`.
- `linsolve`: Any [LinearSolve.jl](https://github.com/SciML/LinearSolve.jl) compatible linear solver.
For example, to use [KLU.jl](https://github.com/JuliaSparse/KLU.jl), specify
`RosShamp4(linsolve = KLUFactorization()`).
When `nothing` is passed, uses `DefaultLinearSolver`.
- `precs`: Any [LinearSolve.jl-compatible preconditioner](https://docs.sciml.ai/LinearSolve/stable/basics/Preconditioners/)
can be used as a left or right preconditioner.
Preconditioners are specified by the `Pl,Pr = precs(W,du,u,p,t,newW,Plprev,Prprev,solverdata)`
function where the arguments are defined as:
- `W`: the current Jacobian of the nonlinear system. Specified as either
``I - \gamma J`` or ``I/\gamma - J`` depending on the algorithm. This will
commonly be a `WOperator` type defined by OrdinaryDiffEq.jl. It is a lazy
representation of the operator. Users can construct the W-matrix on demand
by calling `convert(AbstractMatrix,W)` to receive an `AbstractMatrix` matching
the `jac_prototype`.
- `du`: the current ODE derivative
- `u`: the current ODE state
- `p`: the ODE parameters
- `t`: the current ODE time
- `newW`: a `Bool` which specifies whether the `W` matrix has been updated since
the last call to `precs`. It is recommended that this is checked to only
update the preconditioner when `newW == true`.
- `Plprev`: the previous `Pl`.
- `Prprev`: the previous `Pr`.
- `solverdata`: Optional extra data the solvers can give to the `precs` function.
Solver-dependent and subject to change.
The return is a tuple `(Pl,Pr)` of the LinearSolve.jl-compatible preconditioners.
To specify one-sided preconditioning, simply return `nothing` for the preconditioner
which is not used. Additionally, `precs` must supply the dispatch:
```julia
Pl, Pr = precs(W, du, u, p, t, ::Nothing, ::Nothing, ::Nothing, solverdata)
```
which is used in the solver setup phase to construct the integrator
type with the preconditioners `(Pl,Pr)`.
The default is `precs=DEFAULT_PRECS` where the default preconditioner function
is defined as:
```julia
DEFAULT_PRECS(W, du, u, p, t, newW, Plprev, Prprev, solverdata) = nothing, nothing
```)
Rosenbrock-Wanner Method. An A-stable 4th order Rosenbrock method.
Keyword Arguments
chunk_size
: TBDstandardtag
: TBDautodiff
: boolean to control if the Jacobian should be computed via AD or notconcrete_jac
: function of the formjac!(J, u, p, t)
diff_type
: TBDlinsolve
: custom solver for the inner linear systemsprecs
: custom preconditioner for the inner linear solver
References
- L. F. Shampine, Implementation of Rosenbrock Methods, ACM Transactions on Mathematical Software (TOMS), 8: 2, 93-113. doi:10.1145/355993.355994
OrdinaryDiffEqRosenbrock.Veldd4
— TypeVeldd4(; - `standardtag`: Specifies whether to use package-specific tags instead of the
ForwardDiff default function-specific tags. For more information, see
[this blog post](https://www.stochasticlifestyle.com/improved-forwarddiff-jl-stacktraces-with-package-tags/).
Defaults to `Val{true}()`.
- `autodiff`: Uses [ADTypes.jl](https://sciml.github.io/ADTypes.jl/stable/)
to specify whether to use automatic differentiation via
[ForwardDiff.jl](https://github.com/JuliaDiff/ForwardDiff.jl) or finite
differencing via [FiniteDiff.jl](https://github.com/JuliaDiff/FiniteDiff.jl).
Defaults to `AutoForwardDiff()` for automatic differentiation, which by default uses
`chunksize = 0`, and thus uses the internal ForwardDiff.jl algorithm for the choice.
To use `FiniteDiff.jl`, the `AutoFiniteDiff()` ADType can be used, which has a keyword argument
`fdtype` with default value `Val{:forward}()`, and alternatives `Val{:central}()` and `Val{:complex}()`.
- `concrete_jac`: Specifies whether a Jacobian should be constructed. Defaults to
`nothing`, which means it will be chosen true/false depending on circumstances
of the solver, such as whether a Krylov subspace method is used for `linsolve`.
- `linsolve`: Any [LinearSolve.jl](https://github.com/SciML/LinearSolve.jl) compatible linear solver.
For example, to use [KLU.jl](https://github.com/JuliaSparse/KLU.jl), specify
`Veldd4(linsolve = KLUFactorization()`).
When `nothing` is passed, uses `DefaultLinearSolver`.
- `precs`: Any [LinearSolve.jl-compatible preconditioner](https://docs.sciml.ai/LinearSolve/stable/basics/Preconditioners/)
can be used as a left or right preconditioner.
Preconditioners are specified by the `Pl,Pr = precs(W,du,u,p,t,newW,Plprev,Prprev,solverdata)`
function where the arguments are defined as:
- `W`: the current Jacobian of the nonlinear system. Specified as either
``I - \gamma J`` or ``I/\gamma - J`` depending on the algorithm. This will
commonly be a `WOperator` type defined by OrdinaryDiffEq.jl. It is a lazy
representation of the operator. Users can construct the W-matrix on demand
by calling `convert(AbstractMatrix,W)` to receive an `AbstractMatrix` matching
the `jac_prototype`.
- `du`: the current ODE derivative
- `u`: the current ODE state
- `p`: the ODE parameters
- `t`: the current ODE time
- `newW`: a `Bool` which specifies whether the `W` matrix has been updated since
the last call to `precs`. It is recommended that this is checked to only
update the preconditioner when `newW == true`.
- `Plprev`: the previous `Pl`.
- `Prprev`: the previous `Pr`.
- `solverdata`: Optional extra data the solvers can give to the `precs` function.
Solver-dependent and subject to change.
The return is a tuple `(Pl,Pr)` of the LinearSolve.jl-compatible preconditioners.
To specify one-sided preconditioning, simply return `nothing` for the preconditioner
which is not used. Additionally, `precs` must supply the dispatch:
```julia
Pl, Pr = precs(W, du, u, p, t, ::Nothing, ::Nothing, ::Nothing, solverdata)
```
which is used in the solver setup phase to construct the integrator
type with the preconditioners `(Pl,Pr)`.
The default is `precs=DEFAULT_PRECS` where the default preconditioner function
is defined as:
```julia
DEFAULT_PRECS(W, du, u, p, t, newW, Plprev, Prprev, solverdata) = nothing, nothing
```
step_limiter! = OrdinaryDiffEq.trivial_limiter!)
Rosenbrock-Wanner Method. A 4th order D-stable Rosenbrock method.
Keyword Arguments
chunk_size
: TBDstandardtag
: TBDautodiff
: boolean to control if the Jacobian should be computed via AD or notconcrete_jac
: function of the formjac!(J, u, p, t)
diff_type
: TBDlinsolve
: custom solver for the inner linear systemsprecs
: custom preconditioner for the inner linear solverstep_limiter!
: function of the formlimiter!(u, integrator, p, t)
References
- van Veldhuizen, D-stability and Kaps-Rentrop-methods, M. Computing (1984) 32: 229. doi:10.1007/BF02243574
OrdinaryDiffEqRosenbrock.Velds4
— TypeVelds4(; chunk_size = Val{0}(),
standardtag = Val{true}(),
autodiff = AutoForwardDiff(),
concrete_jac = nothing,
diff_type = Val{:forward}(),
linsolve = nothing,
precs = DEFAULT_PRECS,
step_limiter! = OrdinaryDiffEq.trivial_limiter!)
Rosenbrock-Wanner-W(olfbrandt) Method. A 4th order A-stable Rosenbrock method.
Keyword Arguments
standardtag
: Specifies whether to use package-specific tags instead of the ForwardDiff default function-specific tags. For more information, see this blog post. Defaults toVal{true}()
.autodiff
: Uses ADTypes.jl to specify whether to use automatic differentiation via ForwardDiff.jl or finite differencing via FiniteDiff.jl. Defaults toAutoForwardDiff()
for automatic differentiation, which by default useschunksize = 0
, and thus uses the internal ForwardDiff.jl algorithm for the choice. To useFiniteDiff.jl
, theAutoFiniteDiff()
ADType can be used, which has a keyword argumentfdtype
with default valueVal{:forward}()
, and alternativesVal{:central}()
andVal{:complex}()
.concrete_jac
: Specifies whether a Jacobian should be constructed. Defaults tonothing
, which means it will be chosen true/false depending on circumstances of the solver, such as whether a Krylov subspace method is used forlinsolve
.linsolve
: Any LinearSolve.jl compatible linear solver. For example, to use KLU.jl, specifyVelds4(linsolve = KLUFactorization()
). Whennothing
is passed, usesDefaultLinearSolver
.precs
: Any LinearSolve.jl-compatible preconditioner can be used as a left or right preconditioner. Preconditioners are specified by thePl,Pr = precs(W,du,u,p,t,newW,Plprev,Prprev,solverdata)
function where the arguments are defined as:W
: the current Jacobian of the nonlinear system. Specified as either $I - \gamma J$ or $I/\gamma - J$ depending on the algorithm. This will commonly be aWOperator
type defined by OrdinaryDiffEq.jl. It is a lazy representation of the operator. Users can construct the W-matrix on demand by callingconvert(AbstractMatrix,W)
to receive anAbstractMatrix
matching thejac_prototype
.du
: the current ODE derivativeu
: the current ODE statep
: the ODE parameterst
: the current ODE timenewW
: aBool
which specifies whether theW
matrix has been updated since the last call toprecs
. It is recommended that this is checked to only update the preconditioner whennewW == true
.Plprev
: the previousPl
.Prprev
: the previousPr
.solverdata
: Optional extra data the solvers can give to theprecs
function. Solver-dependent and subject to change.
(Pl,Pr)
of the LinearSolve.jl-compatible preconditioners. To specify one-sided preconditioning, simply returnnothing
for the preconditioner which is not used. Additionally,precs
must supply the dispatch:
which is used in the solver setup phase to construct the integrator type with the preconditionersPl, Pr = precs(W, du, u, p, t, ::Nothing, ::Nothing, ::Nothing, solverdata)
(Pl,Pr)
. The default isprecs=DEFAULT_PRECS
where the default preconditioner function is defined as:DEFAULT_PRECS(W, du, u, p, t, newW, Plprev, Prprev, solverdata) = nothing, nothing
step_limiter!
: function of the formlimiter!(u, integrator, p, t)
References
- van Veldhuizen, D-stability and Kaps-Rentrop-methods, M. Computing (1984) 32: 229. doi:10.1007/BF02243574
OrdinaryDiffEqRosenbrock.GRK4T
— TypeGRK4T(; - `standardtag`: Specifies whether to use package-specific tags instead of the
ForwardDiff default function-specific tags. For more information, see
[this blog post](https://www.stochasticlifestyle.com/improved-forwarddiff-jl-stacktraces-with-package-tags/).
Defaults to `Val{true}()`.
- `autodiff`: Uses [ADTypes.jl](https://sciml.github.io/ADTypes.jl/stable/)
to specify whether to use automatic differentiation via
[ForwardDiff.jl](https://github.com/JuliaDiff/ForwardDiff.jl) or finite
differencing via [FiniteDiff.jl](https://github.com/JuliaDiff/FiniteDiff.jl).
Defaults to `AutoForwardDiff()` for automatic differentiation, which by default uses
`chunksize = 0`, and thus uses the internal ForwardDiff.jl algorithm for the choice.
To use `FiniteDiff.jl`, the `AutoFiniteDiff()` ADType can be used, which has a keyword argument
`fdtype` with default value `Val{:forward}()`, and alternatives `Val{:central}()` and `Val{:complex}()`.
- `concrete_jac`: Specifies whether a Jacobian should be constructed. Defaults to
`nothing`, which means it will be chosen true/false depending on circumstances
of the solver, such as whether a Krylov subspace method is used for `linsolve`.
- `linsolve`: Any [LinearSolve.jl](https://github.com/SciML/LinearSolve.jl) compatible linear solver.
For example, to use [KLU.jl](https://github.com/JuliaSparse/KLU.jl), specify
`GRK4T(linsolve = KLUFactorization()`).
When `nothing` is passed, uses `DefaultLinearSolver`.
- `precs`: Any [LinearSolve.jl-compatible preconditioner](https://docs.sciml.ai/LinearSolve/stable/basics/Preconditioners/)
can be used as a left or right preconditioner.
Preconditioners are specified by the `Pl,Pr = precs(W,du,u,p,t,newW,Plprev,Prprev,solverdata)`
function where the arguments are defined as:
- `W`: the current Jacobian of the nonlinear system. Specified as either
``I - \gamma J`` or ``I/\gamma - J`` depending on the algorithm. This will
commonly be a `WOperator` type defined by OrdinaryDiffEq.jl. It is a lazy
representation of the operator. Users can construct the W-matrix on demand
by calling `convert(AbstractMatrix,W)` to receive an `AbstractMatrix` matching
the `jac_prototype`.
- `du`: the current ODE derivative
- `u`: the current ODE state
- `p`: the ODE parameters
- `t`: the current ODE time
- `newW`: a `Bool` which specifies whether the `W` matrix has been updated since
the last call to `precs`. It is recommended that this is checked to only
update the preconditioner when `newW == true`.
- `Plprev`: the previous `Pl`.
- `Prprev`: the previous `Pr`.
- `solverdata`: Optional extra data the solvers can give to the `precs` function.
Solver-dependent and subject to change.
The return is a tuple `(Pl,Pr)` of the LinearSolve.jl-compatible preconditioners.
To specify one-sided preconditioning, simply return `nothing` for the preconditioner
which is not used. Additionally, `precs` must supply the dispatch:
```julia
Pl, Pr = precs(W, du, u, p, t, ::Nothing, ::Nothing, ::Nothing, solverdata)
```
which is used in the solver setup phase to construct the integrator
type with the preconditioners `(Pl,Pr)`.
The default is `precs=DEFAULT_PRECS` where the default preconditioner function
is defined as:
```julia
DEFAULT_PRECS(W, du, u, p, t, newW, Plprev, Prprev, solverdata) = nothing, nothing
```
step_limiter! = OrdinaryDiffEq.trivial_limiter!)
Rosenbrock-Wanner Method. An efficient 4th order Rosenbrock method.
Keyword Arguments
chunk_size
: TBDstandardtag
: TBDautodiff
: boolean to control if the Jacobian should be computed via AD or notconcrete_jac
: function of the formjac!(J, u, p, t)
diff_type
: TBDlinsolve
: custom solver for the inner linear systemsprecs
: custom preconditioner for the inner linear solverstep_limiter!
: function of the formlimiter!(u, integrator, p, t)
References
- Kaps, P. & Rentrop, Generalized Runge-Kutta methods of order four with stepsize control for stiff ordinary differential equations. P. Numer. Math. (1979) 33: 55. doi:10.1007/BF01396495
OrdinaryDiffEqRosenbrock.GRK4A
— TypeGRK4A(; - `standardtag`: Specifies whether to use package-specific tags instead of the
ForwardDiff default function-specific tags. For more information, see
[this blog post](https://www.stochasticlifestyle.com/improved-forwarddiff-jl-stacktraces-with-package-tags/).
Defaults to `Val{true}()`.
- `autodiff`: Uses [ADTypes.jl](https://sciml.github.io/ADTypes.jl/stable/)
to specify whether to use automatic differentiation via
[ForwardDiff.jl](https://github.com/JuliaDiff/ForwardDiff.jl) or finite
differencing via [FiniteDiff.jl](https://github.com/JuliaDiff/FiniteDiff.jl).
Defaults to `AutoForwardDiff()` for automatic differentiation, which by default uses
`chunksize = 0`, and thus uses the internal ForwardDiff.jl algorithm for the choice.
To use `FiniteDiff.jl`, the `AutoFiniteDiff()` ADType can be used, which has a keyword argument
`fdtype` with default value `Val{:forward}()`, and alternatives `Val{:central}()` and `Val{:complex}()`.
- `concrete_jac`: Specifies whether a Jacobian should be constructed. Defaults to
`nothing`, which means it will be chosen true/false depending on circumstances
of the solver, such as whether a Krylov subspace method is used for `linsolve`.
- `linsolve`: Any [LinearSolve.jl](https://github.com/SciML/LinearSolve.jl) compatible linear solver.
For example, to use [KLU.jl](https://github.com/JuliaSparse/KLU.jl), specify
`GRK4A(linsolve = KLUFactorization()`).
When `nothing` is passed, uses `DefaultLinearSolver`.
- `precs`: Any [LinearSolve.jl-compatible preconditioner](https://docs.sciml.ai/LinearSolve/stable/basics/Preconditioners/)
can be used as a left or right preconditioner.
Preconditioners are specified by the `Pl,Pr = precs(W,du,u,p,t,newW,Plprev,Prprev,solverdata)`
function where the arguments are defined as:
- `W`: the current Jacobian of the nonlinear system. Specified as either
``I - \gamma J`` or ``I/\gamma - J`` depending on the algorithm. This will
commonly be a `WOperator` type defined by OrdinaryDiffEq.jl. It is a lazy
representation of the operator. Users can construct the W-matrix on demand
by calling `convert(AbstractMatrix,W)` to receive an `AbstractMatrix` matching
the `jac_prototype`.
- `du`: the current ODE derivative
- `u`: the current ODE state
- `p`: the ODE parameters
- `t`: the current ODE time
- `newW`: a `Bool` which specifies whether the `W` matrix has been updated since
the last call to `precs`. It is recommended that this is checked to only
update the preconditioner when `newW == true`.
- `Plprev`: the previous `Pl`.
- `Prprev`: the previous `Pr`.
- `solverdata`: Optional extra data the solvers can give to the `precs` function.
Solver-dependent and subject to change.
The return is a tuple `(Pl,Pr)` of the LinearSolve.jl-compatible preconditioners.
To specify one-sided preconditioning, simply return `nothing` for the preconditioner
which is not used. Additionally, `precs` must supply the dispatch:
```julia
Pl, Pr = precs(W, du, u, p, t, ::Nothing, ::Nothing, ::Nothing, solverdata)
```
which is used in the solver setup phase to construct the integrator
type with the preconditioners `(Pl,Pr)`.
The default is `precs=DEFAULT_PRECS` where the default preconditioner function
is defined as:
```julia
DEFAULT_PRECS(W, du, u, p, t, newW, Plprev, Prprev, solverdata) = nothing, nothing
```
step_limiter! = OrdinaryDiffEq.trivial_limiter!)
Rosenbrock-Wanner Method. An A-stable 4th order Rosenbrock method. Essentially "anti-L-stable" but efficient.
Keyword Arguments
chunk_size
: TBDstandardtag
: TBDautodiff
: boolean to control if the Jacobian should be computed via AD or notconcrete_jac
: function of the formjac!(J, u, p, t)
diff_type
: TBDlinsolve
: custom solver for the inner linear systemsprecs
: custom preconditioner for the inner linear solverstep_limiter!
: function of the formlimiter!(u, integrator, p, t)
References
- Kaps, P. & Rentrop, Generalized Runge-Kutta methods of order four with stepsize control for stiff ordinary differential equations. P. Numer. Math. (1979) 33: 55. doi:10.1007/BF01396495
OrdinaryDiffEqRosenbrock.Ros4LStab
— TypeRos4LStab(; - `standardtag`: Specifies whether to use package-specific tags instead of the
ForwardDiff default function-specific tags. For more information, see
[this blog post](https://www.stochasticlifestyle.com/improved-forwarddiff-jl-stacktraces-with-package-tags/).
Defaults to `Val{true}()`.
- `autodiff`: Uses [ADTypes.jl](https://sciml.github.io/ADTypes.jl/stable/)
to specify whether to use automatic differentiation via
[ForwardDiff.jl](https://github.com/JuliaDiff/ForwardDiff.jl) or finite
differencing via [FiniteDiff.jl](https://github.com/JuliaDiff/FiniteDiff.jl).
Defaults to `AutoForwardDiff()` for automatic differentiation, which by default uses
`chunksize = 0`, and thus uses the internal ForwardDiff.jl algorithm for the choice.
To use `FiniteDiff.jl`, the `AutoFiniteDiff()` ADType can be used, which has a keyword argument
`fdtype` with default value `Val{:forward}()`, and alternatives `Val{:central}()` and `Val{:complex}()`.
- `concrete_jac`: Specifies whether a Jacobian should be constructed. Defaults to
`nothing`, which means it will be chosen true/false depending on circumstances
of the solver, such as whether a Krylov subspace method is used for `linsolve`.
- `linsolve`: Any [LinearSolve.jl](https://github.com/SciML/LinearSolve.jl) compatible linear solver.
For example, to use [KLU.jl](https://github.com/JuliaSparse/KLU.jl), specify
`Ros4LStab(linsolve = KLUFactorization()`).
When `nothing` is passed, uses `DefaultLinearSolver`.
- `precs`: Any [LinearSolve.jl-compatible preconditioner](https://docs.sciml.ai/LinearSolve/stable/basics/Preconditioners/)
can be used as a left or right preconditioner.
Preconditioners are specified by the `Pl,Pr = precs(W,du,u,p,t,newW,Plprev,Prprev,solverdata)`
function where the arguments are defined as:
- `W`: the current Jacobian of the nonlinear system. Specified as either
``I - \gamma J`` or ``I/\gamma - J`` depending on the algorithm. This will
commonly be a `WOperator` type defined by OrdinaryDiffEq.jl. It is a lazy
representation of the operator. Users can construct the W-matrix on demand
by calling `convert(AbstractMatrix,W)` to receive an `AbstractMatrix` matching
the `jac_prototype`.
- `du`: the current ODE derivative
- `u`: the current ODE state
- `p`: the ODE parameters
- `t`: the current ODE time
- `newW`: a `Bool` which specifies whether the `W` matrix has been updated since
the last call to `precs`. It is recommended that this is checked to only
update the preconditioner when `newW == true`.
- `Plprev`: the previous `Pl`.
- `Prprev`: the previous `Pr`.
- `solverdata`: Optional extra data the solvers can give to the `precs` function.
Solver-dependent and subject to change.
The return is a tuple `(Pl,Pr)` of the LinearSolve.jl-compatible preconditioners.
To specify one-sided preconditioning, simply return `nothing` for the preconditioner
which is not used. Additionally, `precs` must supply the dispatch:
```julia
Pl, Pr = precs(W, du, u, p, t, ::Nothing, ::Nothing, ::Nothing, solverdata)
```
which is used in the solver setup phase to construct the integrator
type with the preconditioners `(Pl,Pr)`.
The default is `precs=DEFAULT_PRECS` where the default preconditioner function
is defined as:
```julia
DEFAULT_PRECS(W, du, u, p, t, newW, Plprev, Prprev, solverdata) = nothing, nothing
```
step_limiter! = OrdinaryDiffEq.trivial_limiter!)
Rosenbrock-Wanner Method. A 4th order A-stable stiffly stable Rosenbrock method with a stiff-aware 3rd order interpolant
Keyword Arguments
chunk_size
: TBDstandardtag
: TBDautodiff
: boolean to control if the Jacobian should be computed via AD or notconcrete_jac
: function of the formjac!(J, u, p, t)
diff_type
: TBDlinsolve
: custom solver for the inner linear systemsprecs
: custom preconditioner for the inner linear solverstep_limiter!
: function of the formlimiter!(u, integrator, p, t)
References
- E. Hairer, G. Wanner, Solving ordinary differential equations II, stiff and differential-algebraic problems. Computational mathematics (2nd revised ed.), Springer (1996)