IMEX SDIRK Methods
OrdinaryDiffEq.IMEXEuler
— FunctionIMEXEuler(;kwargs...)
The one-step version of the IMEX multistep methods of
- Uri M. Ascher, Steven J. Ruuth, Brian T. R. Wetton. Implicit-Explicit Methods for Time-Dependent Partial Differential Equations. Society for Industrial and Applied Mathematics. Journal on Numerical Analysis, 32(3), pp 797-823, 1995. doi: https://doi.org/10.1137/0732037
When applied to a SplitODEProblem
of the form
u'(t) = f1(u) + f2(u)
The default IMEXEuler()
method uses an update of the form
unew = uold + dt * (f1(unew) + f2(uold))
See also SBDF
, IMEXEulerARK
.
OrdinaryDiffEq.IMEXEulerARK
— FunctionIMEXEulerARK(;kwargs...)
The one-step version of the IMEX multistep methods of
- Uri M. Ascher, Steven J. Ruuth, Brian T. R. Wetton. Implicit-Explicit Methods for Time-Dependent Partial Differential Equations. Society for Industrial and Applied Mathematics. Journal on Numerical Analysis, 32(3), pp 797-823, 1995. doi: https://doi.org/10.1137/0732037
When applied to a SplitODEProblem
of the form
u'(t) = f1(u) + f2(u)
A classical additive Runge-Kutta method in the sense of Araújo, Murua, Sanz-Serna (1997) consisting of the implicit and the explicit Euler method given by
y1 = uold + dt * f1(y1)
unew = uold + dt * (f1(unew) + f2(y1))
See also SBDF
, IMEXEuler
.
OrdinaryDiffEq.KenCarp3
— Type@book{kennedy2001additive, title={Additive Runge-Kutta schemes for convection-diffusion-reaction equations}, author={Kennedy, Christopher Alan}, year={2001}, publisher={National Aeronautics and Space Administration, Langley Research Center} }
KenCarp3: SDIRK Method An A-L stable stiffly-accurate 3rd order ESDIRK method with splitting
OrdinaryDiffEq.KenCarp4
— Type@book{kennedy2001additive, title={Additive Runge-Kutta schemes for convection-diffusion-reaction equations}, author={Kennedy, Christopher Alan}, year={2001}, publisher={National Aeronautics and Space Administration, Langley Research Center} }
KenCarp4: SDIRK Method An A-L stable stiffly-accurate 4th order ESDIRK method with splitting
OrdinaryDiffEq.KenCarp47
— Type@article{kennedy2019higher, title={Higher-order additive Runge–Kutta schemes for ordinary differential equations}, author={Kennedy, Christopher A and Carpenter, Mark H}, journal={Applied Numerical Mathematics}, volume={136}, pages={183–205}, year={2019}, publisher={Elsevier} }
KenCarp47: SDIRK Method An A-L stable stiffly-accurate 4th order seven-stage ESDIRK method with splitting
OrdinaryDiffEq.KenCarp5
— Type@book{kennedy2001additive, title={Additive Runge-Kutta schemes for convection-diffusion-reaction equations}, author={Kennedy, Christopher Alan}, year={2001}, publisher={National Aeronautics and Space Administration, Langley Research Center} }
KenCarp5: SDIRK Method An A-L stable stiffly-accurate 5th order ESDIRK method with splitting
OrdinaryDiffEq.KenCarp58
— Type@article{kennedy2019higher, title={Higher-order additive Runge–Kutta schemes for ordinary differential equations}, author={Kennedy, Christopher A and Carpenter, Mark H}, journal={Applied Numerical Mathematics}, volume={136}, pages={183–205}, year={2019}, publisher={Elsevier} }
KenCarp58: SDIRK Method An A-L stable stiffly-accurate 5th order eight-stage ESDIRK method with splitting
Missing docstring for ESDIRK54I8L2SA
. Check Documenter's build log for details.