Multistep Methods for Stiff Equations

OrdinaryDiffEq.QNDF1Type

QNDF1: Multistep Method An adaptive order 1 quasi-constant timestep L-stable numerical differentiation function (NDF) method. Optional parameter kappa defaults to Shampine's accuracy-optimal -0.1850.

See also QNDF.

source
OrdinaryDiffEq.QNDF2Type

QNDF2: Multistep Method An adaptive order 2 quasi-constant timestep L-stable numerical differentiation function (NDF) method.

See also QNDF.

source
OrdinaryDiffEq.ABDF2Type

E. Alberdi Celayaa, J. J. Anza Aguirrezabalab, P. Chatzipantelidisc. Implementation of an Adaptive BDF2 Formula and Comparison with The MATLAB Ode15s. Procedia Computer Science, 29, pp 1014-1026, 2014. doi: https://doi.org/10.1016/j.procs.2014.05.091

ABDF2: Multistep Method An adaptive order 2 L-stable fixed leading coefficient multistep BDF method.

source
OrdinaryDiffEq.QNDFType

QNDF: Multistep Method An adaptive order quasi-constant timestep NDF method. Utilizes Shampine's accuracy-optimal kappa values as defaults (has a keyword argument for a tuple of kappa coefficients).

@article{shampine1997matlab, title={The matlab ode suite}, author={Shampine, Lawrence F and Reichelt, Mark W}, journal={SIAM journal on scientific computing}, volume={18}, number={1}, pages={1–22}, year={1997}, publisher={SIAM} }

source
OrdinaryDiffEq.FBDFType

FBDF: Fixed leading coefficient BDF

An adaptive order quasi-constant timestep NDF method. Utilizes Shampine's accuracy-optimal kappa values as defaults (has a keyword argument for a tuple of kappa coefficients).

@article{shampine2002solving, title={Solving 0= F (t, y (t), y′(t)) in Matlab}, author={Shampine, Lawrence F}, year={2002}, publisher={Walter de Gruyter GmbH \& Co. KG} }

source
OrdinaryDiffEq.MEBDF2Type

MEBDF2: Multistep Method The second order Modified Extended BDF method, which has improved stability properties over the standard BDF. Fixed timestep only.

source