Echo State Networks
The core component of an ESN is the ESN
type. It represents the entire Echo State Network and includes parameters for configuring the reservoir, input scaling, and output weights. Here's the documentation for the ESN
type:
ReservoirComputing.ESN
— TypeESN(train_data; kwargs...) -> ESN
Creates an Echo State Network (ESN).
Arguments
train_data
: Matrix of training datanum_features x time_steps
.variation
: Variation of ESN (default:Default()
).input_layer
: Input layer of ESN.reservoir
: Reservoir of the ESN.bias
: Bias vector for each time step.rng
: Random number generator used for initializing weights. Default isUtils.default_rng()
.reservoir_driver
: Mechanism for evolving reservoir states (default:RNN()
).nla_type
: Non-linear activation type (default:NLADefault()
).states_type
: Format for storing states (default:StandardStates()
).washout
: Initial time steps to discard (default:0
).matrix_type
: Type of matrices used internally (default: type oftrain_data
).
Examples
julia> train_data = rand(Float32, 10, 100) # 10 features, 100 time steps
10×100 Matrix{Float32}:
0.567676 0.154756 0.584611 0.294015 … 0.573946 0.894333 0.429133
0.327073 0.729521 0.804667 0.263944 0.559342 0.020167 0.897862
0.453606 0.800058 0.568311 0.749441 0.0713146 0.464795 0.532854
0.0173253 0.536959 0.722116 0.910328 0.00224048 0.00202501 0.631075
0.366744 0.119761 0.100593 0.125122 0.700562 0.675474 0.102947
0.539737 0.768351 0.54681 0.648672 … 0.256738 0.223784 0.94327
0.558099 0.42676 0.1948 0.735625 0.0989234 0.119342 0.624182
0.0603135 0.929999 0.263439 0.0372732 0.066125 0.332769 0.25562
0.4463 0.334423 0.444679 0.311695 0.0494497 0.27171 0.214925
0.987182 0.898593 0.295241 0.233098 0.789699 0.453692 0.759205
julia> esn = ESN(train_data, 10, 300; washout = 10)
ESN(10 => 300)
Training
To train an ESN model, you can use the train
function. It takes the ESN model, training data, and other optional parameters as input and returns a trained model. Here's the documentation for the train function:
ReservoirComputing.train
— Functiontrain(esn::AbstractEchoStateNetwork, target_data, training_method = StandardRidge(0.0))
Trains an Echo State Network (ESN) using the provided target data and a specified training method.
Parameters
esn::AbstractEchoStateNetwork
: The ESN instance to be trained.target_data
: Supervised training data for the ESN.training_method
: The method for training the ESN (default:StandardRidge(0.0)
).
Example
julia> train_data = rand(Float32, 10, 100) # 10 features, 100 time steps
10×100 Matrix{Float32}:
0.11437 0.425367 0.585867 0.34078 … 0.0531493 0.761425 0.883164
0.301373 0.497806 0.279603 0.802417 0.49873 0.270156 0.333333
0.135224 0.660179 0.394233 0.512753 0.901221 0.784377 0.687691
0.510203 0.877234 0.614245 0.978405 0.332775 0.768826 0.527077
0.955027 0.398322 0.312156 0.981938 0.473357 0.156704 0.476101
0.353024 0.997632 0.164328 0.470783 … 0.745613 0.85797 0.465201
0.966044 0.194299 0.599167 0.040475 0.0996013 0.325959 0.770103
0.292068 0.495138 0.481299 0.214566 0.819573 0.155951 0.227168
0.133498 0.451058 0.0761995 0.90421 0.994212 0.332164 0.545112
0.214467 0.791524 0.124105 0.951805 0.947166 0.954244 0.889733
julia> esn = ESN(train_data, 10, 300; washout = 10)
ESN(10 => 300)
julia> output_layer = train(esn, rand(Float32, 3, 90))
OutputLayer successfully trained with output size: 3
With these components and variations, you can configure and train ESN models for various time series and sequential data prediction tasks.