low_connectivity
ReservoirComputing.low_connectivity
— Functionlow_connectivity([rng], [T], dims...;
return_sparse = false, connected=false,
in_degree = 1, radius = 1.0, cut_cycle = false)
Construct an internal reservoir connectivity matrix with low connectivity.
This function creates a square reservoir matrix with the specified in-degree for each node (Griffith et al., 2019). When in_degree
is 1, the function can enforce a fully connected cycle if connected
is true
; otherwise, it generates a random connectivity pattern.
Arguments
rng
: Random number generator. Default isUtils.default_rng()
from WeightInitializers.T
: Type of the elements in the reservoir matrix. Default isFloat32
.dims
: Dimensions of the reservoir matrix.
Keyword Arguments
return_sparse
: Iftrue
, the function returns the reservoir matrix as a sparse matrix. Default isfalse
.connected
: Forin_degree == 1
, iftrue
a connected cycle is enforced. Default isfalse
.in_degree
: The number of incoming connections per node. Must not exceed the number of nodes. Default is 1.radius
: The desired spectral radius of the reservoir. Defaults to 1.0.cut_cycle
: Iftrue
, removes one edge from the cycle to cut it. Default isfalse
.
References
- Griffith, A.; Pomerance, A. and Gauthier, D. J. (2019). Forecasting chaotic systems with very low connectivity reservoir computers. Chaos: An Interdisciplinary Journal of Nonlinear Science 29.