selfloopfeedbackcycle
ReservoirComputing.selfloop_feedback_cycle
— Functionselfloop_feedback_cycle([rng], [T], dims...;
cycle_weight=0.1, selfloop_weight=0.1,
return_sparse=false)
Creates a cycle reservoir with feedback connections on even neurons and self loops on odd neurons (Elsarraj et al., 2019).
This architecture is referred to as TP2 in the original paper.
Equations
\[W_{i,j} = \begin{cases} r, & \text{if } j = i - 1 \text{ for } i = 2 \dots N \\ r, & \text{if } i = 1, j = N \\ ll, & \text{if } i = j \text{ and } i \text{ is odd} \\ r, & \text{if } j = i + 1 \text{ and } i \text{ is even}, i \neq N \\ 0, & \text{otherwise} \end{cases}\]
Arguments
rng
: Random number generator. Default isUtils.default_rng()
from WeightInitializers.T
: Type of the elements in the reservoir matrix. Default isFloat32
.dims
: Dimensions of the reservoir matrix.
Keyword arguments
cycle_weight
: Weight of the cycle connections in the reservoir matrix. This can be provided as a single value or an array. In case it is provided as an array please make sure that the lenght of the array matches the lenght of the cycle you want to populate. Default is 0.1.selfloop_weight
: Weight of the self loops in the reservoir matrix. Default is 0.1.return_sparse
: flag for returning asparse
matrix. Default isfalse
.
Examples
julia> reservoir_matrix = selfloop_feedback_cycle(5, 5)
5×5 Matrix{Float32}:
0.1 0.1 0.0 0.0 0.1
0.1 0.0 0.0 0.0 0.0
0.0 0.1 0.1 0.1 0.0
0.0 0.0 0.1 0.0 0.0
0.0 0.0 0.0 0.1 0.1
julia> reservoir_matrix = selfloop_feedback_cycle(5, 5; self_loop_weight=0.5)
5×5 Matrix{Float32}:
0.5 0.1 0.0 0.0 0.1
0.1 0.0 0.0 0.0 0.0
0.0 0.1 0.5 0.1 0.0
0.0 0.0 0.1 0.0 0.0
0.0 0.0 0.0 0.1 0.5
References
- Elsarraj, D.; Qisi, M. A.; Rodan, A.; Obeid, N.; Sharieh, A. and Faris, H. (2019). Demystifying echo state network with deterministic simple topologies. International Journal of Computational Science and Engineering 19, 407–417.