weighted_init
ReservoirComputing.weighted_init — Functionweighted_init([rng], [T], dims...;
scaling=0.1, return_sparse=false)Create and return a matrix representing a weighted input layer. This initializer generates a weighted input matrix with random non-zero elements distributed uniformly within the range [-scaling, scaling] (Lu et al., 2017).
Arguments
rng: Random number generator. Default isUtils.default_rng()from WeightInitializers.T: Type of the elements in the reservoir matrix. Default isFloat32.dims: Dimensions of the matrix. Should followres_size x in_size.
Keyword arguments
scaling: The scaling factor for the weight distribution. Defaults to0.1.return_sparse: flag for returning asparsematrix. Default isfalse.
Examples
julia> res_input = weighted_init(8, 3)
6×3 Matrix{Float32}:
0.0452399 0.0 0.0
-0.0348047 0.0 0.0
0.0 -0.0386004 0.0
0.0 0.00981022 0.0
0.0 0.0 0.0577838
0.0 0.0 -0.0562827References
- Lu, Z.; Pathak, J.; Hunt, B.; Girvan, M.; Brockett, R. and Ott, E. (2017). Reservoir observers: Model-free inference of unmeasured variables in chaotic systems. Chaos: An Interdisciplinary Journal of Nonlinear Science 27.