References
- Barbosa, W. A.; Griffith, A.; Rowlands, G. E.; Govia, L. C.; Ribeill, G. J.; Nguyen, M.-H.; Ohki, T. A. and Gauthier, D. J. (2021). Symmetry-aware reservoir computing. Physical Review E 104.
- Chattopadhyay, A.; Hassanzadeh, P. and Subramanian, D. (2020). Data-driven predictions of a multiscale Lorenz 96 chaotic system using machine-learning methods: reservoir computing, artificial neural network, and long short-term memory network. Nonlinear Processes in Geophysics 27, 373–389.
- Cho, K.; Van Merriënboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H. and Bengio, Y. (2014). Learning phrase representations using RNN encoder-decoder for statistical machine translation, arXiv preprint arXiv:1406.1078.
- Dey, R. and Salem, F. M. (Aug 2017). Gate-variants of Gated Recurrent Unit (GRU) neural networks. In: 2017 IEEE 60th International Midwest Symposium on Circuits and Systems (MWSCAS) (IEEE); pp. 1597–1600.
- Elsarraj, D.; Qisi, M. A.; Rodan, A.; Obeid, N.; Sharieh, A. and Faris, H. (2019). Demystifying echo state network with deterministic simple topologies. International Journal of Computational Science and Engineering 19, 407–417.
- Fu, J.; Li, G.; Tang, J.; Xia, L.; Wang, L. and Duan, S. (2023). A double-cycle echo state network topology for time series prediction. Chaos: An Interdisciplinary Journal of Nonlinear Science 33.
- Gallicchio, C. and Micheli, A. (2017). Deep echo state network (deepesn): A brief survey, arXiv preprint arXiv:1712.04323.
- Griffith, A.; Pomerance, A. and Gauthier, D. J. (2019). Forecasting chaotic systems with very low connectivity reservoir computers. Chaos: An Interdisciplinary Journal of Nonlinear Science 29.
- Hübner, U.; Abraham, N. B. and Weiss, C. O. (1989). Dimensions and entropies of chaotic intensity pulsations in a single-mode far-infrared<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">NH</mml:mi></mml:mrow><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>laser. Physical Review A 40, 6354–6365.
- Herteux, J. and Räth, C. (2020). Breaking symmetries of the reservoir equations in echo state networks. Chaos: An Interdisciplinary Journal of Nonlinear Science 30.
- Lu, Z.; Pathak, J.; Hunt, B.; Girvan, M.; Brockett, R. and Ott, E. (2017). Reservoir observers: Model-free inference of unmeasured variables in chaotic systems. Chaos: An Interdisciplinary Journal of Nonlinear Science 27.
- Lukoševičius, M. (2012). A Practical Guide to Applying Echo State Networks. In: Neural Networks: Tricks of the Trade (Springer Berlin Heidelberg); pp. 659–686.
- Lun, S.-X.; Yao, X.-S.; Qi, H.-Y. and Hu, H.-F. (2015). A novel model of leaky integrator echo state network for time-series prediction. Neurocomputing 159, 58–66.
- Margem, M. and Yilmaz, O. (2017). An experimental study on cellular automata reservoir in pathological sequence learning tasks.
- Nichele, S. and Molund, A. (2017). Deep reservoir computing using cellular automata, arXiv preprint arXiv:1703.02806.
- Pathak, J.; Lu, Z.; Hunt, B. R.; Girvan, M. and Ott, E. (2017). Using machine learning to replicate chaotic attractors and calculate Lyapunov exponents from data. Chaos: An Interdisciplinary Journal of Nonlinear Science 27.
- Pathak, J.; Wikner, A.; Fussell, R.; Chandra, S.; Hunt, B. R.; Girvan, M. and Ott, E. (2018). Hybrid forecasting of chaotic processes: Using machine learning in conjunction with a knowledge-based model. Chaos: An Interdisciplinary Journal of Nonlinear Science 28.
- Rodan, A. and Tino, P. (2011). Minimum Complexity Echo State Network. IEEE Transactions on Neural Networks 22, 131–144.
- Rodan, A. and Tiňo, P. (2012). Simple Deterministically Constructed Cycle Reservoirs with Regular Jumps. Neural Computation 24, 1822–1852.
- Sarli, D. D.; Gallicchio, C. and Micheli, A. (Aug 2020). Gated Echo State Networks: a preliminary study. In: 2020 International Conference on INnovations in Intelligent SysTems and Applications (INISTA) (IEEE); pp. 1–5.
- Viehweg, J.; Poll, C. and Mäder, P. (2025). Deterministic Reservoir Computing for Chaotic Time Series Prediction, arXiv preprint arXiv:2501.15615.
- Wang, H.; Liu, Y.; Lu, P.; Luo, Y.; Wang, D. and Xu, X. (2022). Echo state network with logistic mapping and bias dropout for time series prediction. Neurocomputing 489, 196–210.
- Wang, X.; Jin, Y. and Hao, K. (Jul 2020). A Gated Recurrent Unit based Echo State Network. In: 2020 International Joint Conference on Neural Networks (IJCNN) (IEEE); pp. 1–7.
- Xie, M.; Wang, Q. and Yu, S. (2024). Time Series Prediction of ESN Based on Chebyshev Mapping and Strongly Connected Topology. Neural Processing Letters 56.
- Yang, C.; Qiao, J.; Han, H. and Wang, L. (2018). Design of polynomial echo state networks for time series prediction. Neurocomputing 290, 148–160.
- Yilmaz, O. (2014). Reservoir computing using cellular automata, arXiv preprint arXiv:1410.0162.