Thermal Fluid Symbolic Jacobian Scaling
This is a 1D advection-diffusion-source PDE that uses a second order upwind scheme.
using Pkg
# Rev fixes precompilation https://github.com/hzgzh/XSteam.jl/pull/2
Pkg.add(Pkg.PackageSpec(;name="XSteam", rev="f2a1c589054cfd6bba307985a3a534b6f5a1863b"))
using ModelingToolkit, Symbolics, SymbolicUtils, XSteam, Polynomials, CairoMakie, PrettyTables
using SparseArrays, Chairmarks, Statistics
using ModelingToolkit: t_nounits as t, D_nounits as D
Error: Unsatisfiable requirements detected for package Catalyst [479239e8]:
Catalyst [479239e8] log:
├─possible versions are: 5.0.0-15.0.8 or uninstalled
├─restricted to versions 15 by project [ff517f8d], leaving only versions:
15.0.0-15.0.8
│ └─project [ff517f8d] log:
│ ├─possible versions are: 0.0.0 or uninstalled
│ └─project [ff517f8d] is fixed to version 0.0.0
└─restricted by compatibility requirements with CairoMakie [13f3f980] to v
ersions: 5.0.0-14.0.1 or uninstalled — no versions left
└─CairoMakie [13f3f980] log:
├─possible versions are: 0.0.1-0.15.6 or uninstalled
└─restricted to versions 0.15 by project [ff517f8d], leaving only vers
ions: 0.15.0-0.15.6
└─project [ff517f8d] log: see above
Setup Julia Code
# o o o o o o o < heat capacitors
# | | | | | | | < heat conductors
# o o o o o o o
# | | | | | | |
#Source -> o--o--o--o--o--o--o -> Sink
# advection diff source PDE
m_flow_source(t) = 2.75
T_source(t) = (t > 12 * 3600) * 56.0 + 12.0
# @register_symbolic m_flow_source(t)
# @register_symbolic T_source(t)
#build polynomial liquid-water property only dependent on Temperature
p_l = 5 #bar
T_vec = collect(1:1:150);
@generated kin_visc_T(t) = :(Base.evalpoly(t, $(fit(T_vec, my_pT.(p_l, T_vec) ./ rho_pT.(p_l, T_vec), 5).coeffs...,)))
@generated lambda_T(t) = :(Base.evalpoly(t, $(fit(T_vec, tc_pT.(p_l, T_vec), 3).coeffs...,)))
@generated Pr_T(t) = :(Base.evalpoly(t, $(fit(T_vec, 1e3 * Cp_pT.(p_l, T_vec) .* my_pT.(p_l, T_vec) ./ tc_pT.(p_l, T_vec), 5).coeffs...,)))
@generated rho_T(t) = :(Base.evalpoly(t, $(fit(T_vec, rho_pT.(p_l, T_vec), 4).coeffs...,)))
@generated rhocp_T(t) = :(Base.evalpoly(t, $(fit(T_vec, 1000 * rho_pT.(p_l, T_vec) .* Cp_pT.(p_l, T_vec), 5).coeffs...,)))
# @register_symbolic kin_visc_T(t)
# @register_symbolic lambda_T(t)
# @register_symbolic Pr_T(t)
# @register_symbolic rho_T(t)
# @register_symbolic rhocp_T(t)
@connector function FluidPort(; name, p=101325.0, m=0.0, T=0.0)
sts = @variables p(t) = p m(t) = m [connect = Flow] T(t) = T [connect = Stream]
ODESystem(Equation[], t, sts, []; name=name)
end
@connector function VectorHeatPort(; name, N=100, T0=0.0, Q0=0.0)
sts = @variables (T(t))[1:N] = T0 (Q(t))[1:N] = Q0 [connect = Flow]
ODESystem(Equation[], t, [T; Q], []; name=name)
end
@register_symbolic Dxx_coeff(u, d, T)
#Taylor-aris dispersion model
function Dxx_coeff(u, d, T)
Re = abs(u) * d / kin_visc_T(T) + 0.1
if Re < 1000.0
(d^2 / 4) * u^2 / 48 / 0.14e-6
else
d * u * (1.17e9 * Re^(-2.5) + 0.41)
end
end
@register_symbolic Nusselt(Re, Pr, f)
#Nusselt number model
function Nusselt(Re, Pr, f)
if Re <= 2300.0
3.66
elseif Re <= 3100.0
3.5239 * (Re / 1000)^4 - 45.158 * (Re / 1000)^3 + 212.13 * (Re / 1000)^2 - 427.45 * (Re / 1000) + 316.08
else
f / 8 * ((Re - 1000) * Pr) / (1 + 12.7 * (f / 8)^(1 / 2) * (Pr^(2 / 3) - 1))
end
end
# @register_symbolic Churchill_f(Re, epsilon, d)
#Darcy weisbach friction factor
function Churchill_f(Re, epsilon, d)
theta_1 = (-2.457 * log(((7 / Re)^0.9) + (0.27 * (epsilon / d))))^16
theta_2 = (37530 / Re)^16
8 * ((((8 / Re)^12) + (1 / ((theta_1 + theta_2)^1.5)))^(1 / 12))
end
function FluidRegion(; name, L=1.0, dn=0.05, N=100, T0=0.0,
lumped_T=50, diffusion=true, e=1e-4)
@named inlet = FluidPort()
@named outlet = FluidPort()
@named heatport = VectorHeatPort(N=N)
dx = L / N
c = [-1 / 8, -3 / 8, -3 / 8] # advection stencil coefficients
A = pi * dn^2 / 4
p = @parameters C_shift = 0.0 Rw = 0.0 # stuff for latter
@variables begin
(T(t))[1:N] = fill(T0, N)
Twall(t)[1:N] = fill(T0, N)
(S(t))[1:N] = fill(T0, N)
(C(t))[1:N] = fill(1.0, N)
u(t) = 1e-6
Re(t) = 1000.0
Dxx(t) = 0.0
Pr(t) = 1.0
alpha(t) = 1.0
f(t) = 1.0
end
sts = vcat(T, Twall, S, C, Num[u], Num[Re], Num[Dxx], Num[Pr], Num[alpha], Num[f])
eqs = Equation[
Re ~ 0.1 + dn * abs(u) / kin_visc_T(lumped_T)
Pr ~ Pr_T(lumped_T)
f ~ Churchill_f(Re, e, dn) #Darcy-weisbach
alpha ~ Nusselt(Re, Pr, f) * lambda_T(lumped_T) / dn
Dxx ~ diffusion * Dxx_coeff(u, dn, lumped_T)
inlet.m ~ -outlet.m
inlet.p ~ outlet.p
inlet.T ~ instream(inlet.T)
outlet.T ~ T[N]
u ~ inlet.m / rho_T(inlet.T) / A
[C[i] ~ dx * A * rhocp_T(T[i]) for i in 1:N]
[S[i] ~ heatport.Q[i] for i in 1:N]
[Twall[i] ~ heatport.T[i] for i in 1:N]
#source term
[S[i] ~ (1 / (1 / (alpha * dn * pi * dx) + abs(Rw / 1000))) * (Twall[i] - T[i]) for i in 1:N]
#second order upwind + diffusion + source
D(T[1]) ~ u / dx * (inlet.T - T[1]) + Dxx * (T[2] - T[1]) / dx^2 + S[1] / (C[1] - C_shift)
D(T[2]) ~ u / dx * (c[1] * inlet.T - sum(c) * T[1] + c[2] * T[2] + c[3] * T[3]) + Dxx * (T[1] - 2 * T[2] + T[3]) / dx^2 + S[2] / (C[2] - C_shift)
[D(T[i]) ~ u / dx * (c[1] * T[i-2] - sum(c) * T[i-1] + c[2] * T[i] + c[3] * T[i+1]) + Dxx * (T[i-1] - 2 * T[i] + T[i+1]) / dx^2 + S[i] / (C[i] - C_shift) for i in 3:N-1]
D(T[N]) ~ u / dx * (T[N-1] - T[N]) + Dxx * (T[N-1] - T[N]) / dx^2 + S[N] / (C[N] - C_shift)
]
ODESystem(eqs, t, sts, p; systems=[inlet, outlet, heatport], name=name)
end
# @register_symbolic Cn_circular_wall_inner(d, D, cp, ρ)
function Cn_circular_wall_inner(d, D, cp, ρ)
C = pi / 4 * (D^2 - d^2) * cp * ρ
return C / 2
end
# @register_symbolic Cn_circular_wall_outer(d, D, cp, ρ)
function Cn_circular_wall_outer(d, D, cp, ρ)
C = pi / 4 * (D^2 - d^2) * cp * ρ
return C / 2
end
# @register_symbolic Ke_circular_wall(d, D, λ)
function Ke_circular_wall(d, D, λ)
2 * pi * λ / log(D / d)
end
function CircularWallFEM(; name, L=100, N=10, d=0.05, t_layer=[0.002],
λ=[50], cp=[500], ρ=[7850], T0=0.0)
@named inner_heatport = VectorHeatPort(N=N)
@named outer_heatport = VectorHeatPort(N=N)
dx = L / N
Ne = length(t_layer)
Nn = Ne + 1
dn = vcat(d, d .+ 2.0 .* cumsum(t_layer))
Cn = zeros(Nn)
Cn[1:Ne] += Cn_circular_wall_inner.(dn[1:Ne], dn[2:Nn], cp, ρ) .* dx
Cn[2:Nn] += Cn_circular_wall_outer.(dn[1:Ne], dn[2:Nn], cp, ρ) .* dx
p = @parameters C_shift = 0.0
Ke = Ke_circular_wall.(dn[1:Ne], dn[2:Nn], λ) .* dx
@variables begin
(Tn(t))[1:N, 1:Nn] = fill(T0, N, Nn)
(Qe(t))[1:N, 1:Ne] = fill(T0, N, Ne)
end
sts = [vec(Tn); vec(Qe)]
e0 = Equation[inner_heatport.T[i] ~ Tn[i, 1] for i in 1:N]
e1 = Equation[outer_heatport.T[i] ~ Tn[i, Nn] for i in 1:N]
e2 = Equation[Qe[i, j] ~ Ke[j] * (-Tn[i, j+1] + Tn[i, j]) for i in 1:N for j in 1:Ne]
e3 = Equation[D(Tn[i, 1]) * (Cn[1] + C_shift) ~ inner_heatport.Q[i] - Qe[i, 1] for i in 1:N]
e4 = Equation[D(Tn[i, j]) * Cn[j] ~ Qe[i, j-1] - Qe[i, j] for i in 1:N for j in 2:Nn-1]
e5 = Equation[D(Tn[i, Nn]) * Cn[Nn] ~ Qe[i, Ne] + outer_heatport.Q[i] for i in 1:N]
eqs = vcat(e0, e1, e2, e3, e4, e5)
ODESystem(eqs, t, sts, p; systems=[inner_heatport, outer_heatport], name=name)
end
function CylindricalSurfaceConvection(; name, L=100, N=100, d=1.0, α=5.0)
dx = L / N
S = pi * d * dx
@named heatport = VectorHeatPort(N=N)
sts = @variables Tenv(t) = 0.0
eqs = [
Tenv ~ 18.0
[heatport.Q[i] ~ α * S * (heatport.T[i] - Tenv) for i in 1:N]
]
ODESystem(eqs, t, sts, []; systems=[heatport], name=name)
end
function PreinsulatedPipe(; name, L=100.0, N=100.0, dn=0.05, T0=0.0, t_layer=[0.004, 0.013],
λ=[50, 0.04], cp=[500, 1200], ρ=[7800, 40], α=5.0,
e=1e-4, lumped_T=50, diffusion=true)
@named inlet = FluidPort()
@named outlet = FluidPort()
@named fluid_region = FluidRegion(L=L, N=N, dn=dn, e=e, lumped_T=lumped_T, diffusion=diffusion)
@named shell = CircularWallFEM(L=L, N=N, d=dn, t_layer=t_layer, λ=λ, cp=cp, ρ=ρ)
@named surfconv = CylindricalSurfaceConvection(L=L, N=N, d=dn + 2.0 * sum(t_layer), α=α)
systems = [fluid_region, shell, inlet, outlet, surfconv]
eqs = [
connect(fluid_region.inlet, inlet)
connect(fluid_region.outlet, outlet)
connect(fluid_region.heatport, shell.inner_heatport)
connect(shell.outer_heatport, surfconv.heatport)
]
ODESystem(eqs, t, [], []; systems=systems, name=name)
end
function Source(; name, p_feed=100000)
@named outlet = FluidPort()
sts = @variables m_flow(t) = 1e-6
eqs = [
m_flow ~ m_flow_source(t)
outlet.m ~ -m_flow
outlet.p ~ p_feed
outlet.T ~ T_source(t)
]
compose(ODESystem(eqs, t, sts, []; name=name), [outlet])
end
function Sink(; name)
@named inlet = FluidPort()
eqs = [
inlet.T ~ instream(inlet.T)
]
compose(ODESystem(eqs, t, [], []; name=name), [inlet])
end
function TestBenchPreinsulated(; name, L=1.0, dn=0.05, t_layer=[0.0056, 0.013], N=100, diffusion=true, lumped_T=20)
@named pipe = PreinsulatedPipe(L=L, dn=dn, N=N, diffusion=diffusion, t_layer=t_layer, lumped_T=lumped_T)
@named source = Source()
@named sink = Sink()
subs = [source, pipe, sink]
eqs = [
connect(source.outlet, pipe.inlet)
connect(pipe.outlet, sink.inlet)
]
compose(ODESystem(eqs, t, [], []; name=name), subs)
end
function call(fn, args...)
fn(args...)
end
Error: LoadError: UndefVarError: `@connector` not defined
in expression starting at /cache/build/exclusive-amdci3-0/julialang/scimlbe
nchmarks-dot-jl/benchmarks/Symbolics/ThermalFluid.jmd:28
The sparsejacobian
function in Symbolics.jl is optimized for hashconsing and caching, and as such performs very poorly without either of those features. We use the old implementation, optimized without hashconsing, to benchmark performance without hashconsing and without caching to avoid biasing the results.
include("old_sparse_jacobian.jl")
function run_and_time_construction!(jacobian_times, jacobian_gctimes, jacobian_allocs, build_times, functions, i, N)
@mtkbuild sys = TestBenchPreinsulated(L=470, N=N, dn=0.3127, t_layer=[0.0056, 0.058])
rhs = [eq.rhs for eq in full_equations(sys)]
dvs = unknowns(sys)
@info "Built system"
SymbolicUtils.ENABLE_HASHCONSING[] = false
jac_result = @be old_sparsejacobian(rhs, dvs)
@info "No hashconsing benchmark"
jac_nocse = old_sparsejacobian(rhs, dvs)
@info "No hashconsing result"
jacobian_times[1][i] = mean(x -> x.time, jac_result.samples)
jacobian_gctimes[1][i] = mean(x -> x.time * x.gc_fraction, jac_result.samples)
jacobian_allocs[1][i] = mean(x -> x.bytes, jac_result.samples)
@info "times" jacobian_times[1][i] jacobian_gctimes[1][i] jacobian_allocs[1][i]
SymbolicUtils.ENABLE_HASHCONSING[] = true
jac_result = @be (Symbolics.clear_derivative_caches!(); Symbolics.sparsejacobian(rhs, dvs))
@info "Hashconsing benchmark"
jac_cse = Symbolics.sparsejacobian(rhs, dvs)
@info "Hashconsing result"
jacobian_times[2][i] = mean(x -> x.time, jac_result.samples)
jacobian_gctimes[2][i] = mean(x -> x.time * x.gc_fraction, jac_result.samples)
jacobian_allocs[2][i] = mean(x -> x.bytes, jac_result.samples)
@info "times" jacobian_times[2][i] jacobian_gctimes[2][i] jacobian_allocs[2][i]
@assert isequal(jac_nocse, jac_cse)
jac = jac_cse
ps = parameters(sys)
defs = defaults(sys)
u0 = Float64[Symbolics.fixpoint_sub(v, defs) for v in dvs]
p = Float64[Symbolics.fixpoint_sub(v, defs) for v in ps]
t0 = 0.0
buffer_nocse = similar(jac, Float64)
buffer_nocse.nzval .= 0.0
buffer_cse = similar(jac, Float64)
buffer_cse.nzval .= 0.0
f_jac_nocse = eval(build_function(jac, dvs, ps, t; iip_config = (false, true), expression = Val{true}, cse = false)[2])
functions[1][i] = let buffer_nocse = buffer_nocse, u0 = u0, p = p, t0 = t0, f_jac_nocse = f_jac_nocse
function nocse()
f_jac_nocse(buffer_nocse, u0, p, t0)
buffer_nocse
end
end
@info "No CSE build_function result"
build_result_nocse = @be build_function(jac, dvs, ps, t; iip_config = (false, true), expression = Val{true}, cse = false)
@info "No CSE build_function benchmark"
build_times[1][i] = mean(x -> x.time, build_result_nocse.samples)
@info "build_function time" build_times[1][i]
f_jac_cse = eval(build_function(jac, dvs, ps, t; iip_config = (false, true), expression = Val{true}, cse = true)[2])
functions[2][i] = let buffer_cse = buffer_cse, u0 = u0, p = p, t0 = t0, f_jac_cse = f_jac_cse
function nocse()
f_jac_cse(buffer_cse, u0, p, t0)
buffer_cse
end
end
@info "CSE build_function result"
build_result_cse = @be build_function(jac, dvs, ps, t; iip_config = (false, true), expression = Val{true}, cse = true)
@info "CSE build_function benchmark"
build_times[2][i] = mean(x -> x.time, build_result_cse.samples)
@info "build_function time" build_times[2][i]
return nothing
end
function run_and_time_call!(functions, first_call_times, second_call_times, i)
fnocse = functions[1][i]
fcse = functions[2][i]
first_call_result_nocse = @timed fnocse()
first_call_times[1][i] = first_call_result_nocse.time
@info "First call time" first_call_times[1][i]
second_call_result_nocse = @be fnocse()
second_call_times[1][i] = mean(x -> x.time, second_call_result_nocse.samples)
@info "Runtime" second_call_times[1][i]
first_call_result_cse = @timed fcse()
first_call_times[2][i] = first_call_result_cse.time
@info "First call time" first_call_times[2][i]
second_call_result_cse = @be fcse()
second_call_times[2][i] = mean(x -> x.time, second_call_result_cse.samples)
@info "Runtime" second_call_times[2][i]
end
Error: LoadError: UndefVarError: `SymbolicUtils` not defined
in expression starting at /cache/build/exclusive-amdci3-0/julialang/scimlbe
nchmarks-dot-jl/benchmarks/Symbolics/old_sparse_jacobian.jl:21
N = [5, 10, 20, 40, 80, 160, 320];
jacobian_times = [zeros(Float64, length(N)), zeros(Float64, length(N))]
functions = [Vector{Any}(undef, length(N)), Vector{Any}(undef, length(N))]
jacobian_gctimes = copy.(jacobian_times)
jacobian_allocs = copy.(jacobian_times)
# [without_cse_times, with_cse_times]
build_times = copy.(jacobian_times)
first_call_times = copy.(jacobian_times)
second_call_times = copy.(jacobian_times)
2-element Vector{Vector{Float64}}:
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
Timings
Chairmarks.DEFAULTS.seconds = 15.0
# compile
run_and_time_construction!(jacobian_times, jacobian_gctimes, jacobian_allocs, build_times, functions, 1, 5)
run_and_time_call!(functions, first_call_times, second_call_times, 1)
for (i, n) in enumerate(N)
@info i n
@time run_and_time_construction!(jacobian_times, jacobian_gctimes, jacobian_allocs, build_times, functions, i, n)
end
for (i, n) in enumerate(N)
@info i n
run_and_time_call!(functions, first_call_times, second_call_times, i)
end
Error: UndefVarError: `Chairmarks` not defined
Results
tabledata = hcat(N, jacobian_times..., jacobian_gctimes..., jacobian_allocs..., build_times..., first_call_times..., second_call_times...)
header = ["N", "Jacobian time (no hashconsing)", "Jacobian time (hashconsing)", "Jacobian GC time (no hashconsing)", "Jacobian GC time (hashconsing)", "Jacobian allocated memory (no hashconsing) (B)", "Jacobian allocated memory (hashconsing) (B)", "`build_function` time (no CSE)", "`build_function` time (CSE)", "First call time (no CSE)", "First call time (CSE)", "Second call time (no CSE)", "Second call time (CSE)"]
pretty_table(tabledata; header, backend = Val(:html))
Error: UndefVarError: `pretty_table` not defined
f = Figure(size = (750, 400))
titles = [
"Jacobian symbolic computation", "Jacobian symbolic computation", "Code generation",
"Numerical function compilation", "Numerical function evaluation"]
labels = ["Time (seconds)", "Allocated memory (bytes)",
"Time (seconds)", "Time (seconds)", "Time (seconds)"]
times = [jacobian_times, jacobian_allocs, build_times, first_call_times, second_call_times]
axes = Axis[]
for i in 1:2
label = labels[i]
data = times[i]
ax = Axis(f[1, i], xscale = log10, yscale = log10, xlabel = "model size",
xlabelsize = 10, ylabel = label, ylabelsize = 10, xticks = N,
title = titles[i], titlesize = 12, xticklabelsize = 10, yticklabelsize = 10)
push!(axes, ax)
l1 = scatterlines!(ax, N, data[1], label = "without hashconsing")
l2 = scatterlines!(ax, N, data[2], label = "with hashconsing")
end
Legend(f[1, 3], axes[1], "Methods", tellwidth = false, labelsize = 12, titlesize = 15)
axes2 = Axis[]
# make equal y-axis unit length
mn3, mx3 = extrema(reduce(vcat, times[3]))
xn3 = log10(mx3 / mn3)
mn4, mx4 = extrema(reduce(vcat, times[4]))
xn4 = log10(mx4 / mn4)
mn5, mx5 = extrema(reduce(vcat, times[5]))
xn5 = log10(mx5 / mn5)
xn = max(xn3, xn4, xn5)
xn += 0.2
hxn = xn / 2
hxn3 = (log10(mx3) + log10(mn3)) / 2
hxn4 = (log10(mx4) + log10(mn4)) / 2
hxn5 = (log10(mx5) + log10(mn5)) / 2
ylims = [(exp10(hxn3 - hxn), exp10(hxn3 + hxn)), (exp10(hxn4 - hxn), exp10(hxn4 + hxn)),
(exp10(hxn5 - hxn), exp10(hxn5 + hxn))]
for i in 1:3
ir = i + 2
label = labels[ir]
data = times[ir]
ax = Axis(f[2, i], xscale = log10, yscale = log10, xlabel = "model size",
xlabelsize = 10, ylabel = label, ylabelsize = 10, xticks = N,
title = titles[ir], titlesize = 12, xticklabelsize = 10, yticklabelsize = 10)
ylims!(ax, ylims[i]...)
push!(axes2, ax)
l1 = scatterlines!(ax, N, data[1], label = "without hashconsing")
l2 = scatterlines!(ax, N, data[2], label = "with hashconsing")
end
save("thermal_fluid.pdf", f)
f
Error: UndefVarError: `Figure` not defined
Appendix
Appendix
These benchmarks are a part of the SciMLBenchmarks.jl repository, found at: https://github.com/SciML/SciMLBenchmarks.jl. For more information on high-performance scientific machine learning, check out the SciML Open Source Software Organization https://sciml.ai.
To locally run this benchmark, do the following commands:
using SciMLBenchmarks
SciMLBenchmarks.weave_file("benchmarks/Symbolics","ThermalFluid.jmd")
Computer Information:
Julia Version 1.10.10
Commit 95f30e51f41 (2025-06-27 09:51 UTC)
Build Info:
Official https://julialang.org/ release
Platform Info:
OS: Linux (x86_64-linux-gnu)
CPU: 128 × AMD EPYC 7502 32-Core Processor
WORD_SIZE: 64
LIBM: libopenlibm
LLVM: libLLVM-15.0.7 (ORCJIT, znver2)
Threads: 1 default, 0 interactive, 1 GC (on 128 virtual cores)
Environment:
JULIA_CPU_THREADS = 128
JULIA_DEPOT_PATH = /cache/julia-buildkite-plugin/depots/5b300254-1738-4989-ae0a-f4d2d937f953
Package Information:
Status `/cache/build/exclusive-amdci3-0/julialang/scimlbenchmarks-dot-jl/benchmarks/Symbolics/Project.toml`
[6e4b80f9] BenchmarkTools v1.6.0
⌃ [13f3f980] CairoMakie v0.13.10
⌃ [479239e8] Catalyst v15.0.1
[0ca39b1e] Chairmarks v1.3.1
⌅ [864edb3b] DataStructures v0.18.22
⌃ [7ed4a6bd] LinearSolve v3.26.0
⌅ [961ee093] ModelingToolkit v9.72.0
[bac558e1] OrderedCollections v1.8.1
⌃ [1dea7af3] OrdinaryDiffEq v6.99.0
[91a5bcdd] Plots v1.40.19
⌃ [f27b6e38] Polynomials v4.0.21
[08abe8d2] PrettyTables v3.0.8
[b4db0fb7] ReactionNetworkImporters v0.16.1
[31c91b34] SciMLBenchmarks v0.1.3
[d1185830] SymbolicUtils v3.31.0
[0c5d862f] Symbolics v6.52.0
[a759f4b9] TimerOutputs v0.5.29
[95ff35a0] XSteam v0.3.0 `https://github.com/hzgzh/XSteam.jl.git#f2a1c58`
[37e2e46d] LinearAlgebra
[2f01184e] SparseArrays v1.10.0
[10745b16] Statistics v1.10.0
Info Packages marked with ⌃ and ⌅ have new versions available. Those with ⌃ may be upgradable, but those with ⌅ are restricted by compatibility constraints from upgrading. To see why use `status --outdated`
Warning The project dependencies or compat requirements have changed since the manifest was last resolved. It is recommended to `Pkg.resolve()` or consider `Pkg.update()` if necessary.
And the full manifest:
Status `/cache/build/exclusive-amdci3-0/julialang/scimlbenchmarks-dot-jl/benchmarks/Symbolics/Manifest.toml`
[47edcb42] ADTypes v1.17.0
[621f4979] AbstractFFTs v1.5.0
[1520ce14] AbstractTrees v0.4.5
[7d9f7c33] Accessors v0.1.42
[79e6a3ab] Adapt v4.3.0
[35492f91] AdaptivePredicates v1.2.0
[66dad0bd] AliasTables v1.1.3
[27a7e980] Animations v0.4.2
[ec485272] ArnoldiMethod v0.4.0
[4fba245c] ArrayInterface v7.19.0
[4c555306] ArrayLayouts v1.11.2
[67c07d97] Automa v1.1.0
[13072b0f] AxisAlgorithms v1.1.0
[39de3d68] AxisArrays v0.4.7
[18cc8868] BaseDirs v1.3.2
[6e4b80f9] BenchmarkTools v1.6.0
[e2ed5e7c] Bijections v0.2.2
[d1d4a3ce] BitFlags v0.1.9
[62783981] BitTwiddlingConvenienceFunctions v0.1.6
[8e7c35d0] BlockArrays v1.7.1
[70df07ce] BracketingNonlinearSolve v1.3.0
[fa961155] CEnum v0.5.0
[2a0fbf3d] CPUSummary v0.2.7
[96374032] CRlibm v1.0.2
[00ebfdb7] CSTParser v3.4.3
[159f3aea] Cairo v1.1.1
⌃ [13f3f980] CairoMakie v0.13.10
⌃ [479239e8] Catalyst v15.0.1
[d360d2e6] ChainRulesCore v1.26.0
[0ca39b1e] Chairmarks v1.3.1
[fb6a15b2] CloseOpenIntervals v0.1.13
[944b1d66] CodecZlib v0.7.8
[a2cac450] ColorBrewer v0.4.1
[35d6a980] ColorSchemes v3.30.0
[3da002f7] ColorTypes v0.12.1
[c3611d14] ColorVectorSpace v0.11.0
[5ae59095] Colors v0.13.1
[861a8166] Combinatorics v1.0.3
⌅ [a80b9123] CommonMark v0.8.16
[38540f10] CommonSolve v0.2.4
[bbf7d656] CommonSubexpressions v0.3.1
[f70d9fcc] CommonWorldInvalidations v1.0.0
[34da2185] Compat v4.18.0
[b152e2b5] CompositeTypes v0.1.4
[a33af91c] CompositionsBase v0.1.2
[2569d6c7] ConcreteStructs v0.2.3
[f0e56b4a] ConcurrentUtilities v2.5.0
[8f4d0f93] Conda v1.10.2
[187b0558] ConstructionBase v1.6.0
[d38c429a] Contour v0.6.3
[adafc99b] CpuId v0.3.1
[a8cc5b0e] Crayons v4.1.1
[9a962f9c] DataAPI v1.16.0
⌅ [864edb3b] DataStructures v0.18.22
[e2d170a0] DataValueInterfaces v1.0.0
[927a84f5] DelaunayTriangulation v1.6.4
[8bb1440f] DelimitedFiles v1.9.1
⌃ [2b5f629d] DiffEqBase v6.168.0
[459566f4] DiffEqCallbacks v4.9.0
[77a26b50] DiffEqNoiseProcess v5.24.1
[163ba53b] DiffResults v1.1.0
[b552c78f] DiffRules v1.15.1
⌅ [a0c0ee7d] DifferentiationInterface v0.6.54
[8d63f2c5] DispatchDoctor v0.4.26
[31c24e10] Distributions v0.25.120
[ffbed154] DocStringExtensions v0.9.5
[5b8099bc] DomainSets v0.7.16
[7c1d4256] DynamicPolynomials v0.6.3
[06fc5a27] DynamicQuantities v1.8.0
[4e289a0a] EnumX v1.0.5
[f151be2c] EnzymeCore v0.8.12
[429591f6] ExactPredicates v2.2.8
[460bff9d] ExceptionUnwrapping v0.1.11
[d4d017d3] ExponentialUtilities v1.27.0
[e2ba6199] ExprTools v0.1.10
[55351af7] ExproniconLite v0.10.14
[411431e0] Extents v0.1.6
[c87230d0] FFMPEG v0.4.4
[7a1cc6ca] FFTW v1.9.0
[7034ab61] FastBroadcast v0.3.5
[9aa1b823] FastClosures v0.3.2
[442a2c76] FastGaussQuadrature v1.0.2
[a4df4552] FastPower v1.1.3
[5789e2e9] FileIO v1.17.0
⌅ [8fc22ac5] FilePaths v0.8.3
[48062228] FilePathsBase v0.9.24
[1a297f60] FillArrays v1.13.0
[64ca27bc] FindFirstFunctions v1.4.1
[6a86dc24] FiniteDiff v2.28.1
[53c48c17] FixedPointNumbers v0.8.5
[1fa38f19] Format v1.3.7
⌅ [f6369f11] ForwardDiff v0.10.38
[b38be410] FreeType v4.1.1
[663a7486] FreeTypeAbstraction v0.10.8
[069b7b12] FunctionWrappers v1.1.3
[77dc65aa] FunctionWrappersWrappers v0.1.3
[d9f16b24] Functors v0.5.2
[46192b85] GPUArraysCore v0.2.0
[28b8d3ca] GR v0.73.17
[c145ed77] GenericSchur v0.5.5
[5c1252a2] GeometryBasics v0.5.10
[d7ba0133] Git v1.5.0
[c27321d9] Glob v1.3.1
[a2bd30eb] Graphics v1.1.3
[86223c79] Graphs v1.13.1
[3955a311] GridLayoutBase v0.11.2
[42e2da0e] Grisu v1.0.2
[cd3eb016] HTTP v1.10.17
[eafb193a] Highlights v0.5.3
[34004b35] HypergeometricFunctions v0.3.28
[7073ff75] IJulia v1.30.2
[615f187c] IfElse v0.1.1
[2803e5a7] ImageAxes v0.6.12
[c817782e] ImageBase v0.1.7
[a09fc81d] ImageCore v0.10.5
[82e4d734] ImageIO v0.6.9
[bc367c6b] ImageMetadata v0.9.10
[9b13fd28] IndirectArrays v1.0.0
[d25df0c9] Inflate v0.1.5
[18e54dd8] IntegerMathUtils v0.1.3
⌅ [a98d9a8b] Interpolations v0.15.1
⌅ [d1acc4aa] IntervalArithmetic v0.22.36
[8197267c] IntervalSets v0.7.11
[3587e190] InverseFunctions v0.1.17
[92d709cd] IrrationalConstants v0.2.4
[f1662d9f] Isoband v0.1.1
[c8e1da08] IterTools v1.10.0
[82899510] IteratorInterfaceExtensions v1.0.0
[1019f520] JLFzf v0.1.11
[692b3bcd] JLLWrappers v1.7.1
[682c06a0] JSON v0.21.4
[ae98c720] Jieko v0.2.1
[b835a17e] JpegTurbo v0.1.6
⌅ [98e50ef6] JuliaFormatter v1.0.62
⌃ [ccbc3e58] JumpProcesses v9.16.1
[5ab0869b] KernelDensity v0.6.10
[ba0b0d4f] Krylov v0.10.1
[b964fa9f] LaTeXStrings v1.4.0
[23fbe1c1] Latexify v0.16.9
[10f19ff3] LayoutPointers v0.1.17
[5078a376] LazyArrays v2.6.2
[8cdb02fc] LazyModules v0.3.1
[87fe0de2] LineSearch v0.1.4
[d3d80556] LineSearches v7.4.0
⌃ [7ed4a6bd] LinearSolve v3.26.0
[2ab3a3ac] LogExpFunctions v0.3.29
[e6f89c97] LoggingExtras v1.1.0
[d8e11817] MLStyle v0.4.17
[1914dd2f] MacroTools v0.5.16
⌅ [ee78f7c6] Makie v0.22.10
⌅ [20f20a25] MakieCore v0.9.5
[d125e4d3] ManualMemory v0.1.8
[dbb5928d] MappedArrays v0.4.2
[0a4f8689] MathTeXEngine v0.6.6
[bb5d69b7] MaybeInplace v0.1.4
[739be429] MbedTLS v1.1.9
[442fdcdd] Measures v0.3.2
[e1d29d7a] Missings v1.2.0
⌅ [961ee093] ModelingToolkit v9.72.0
[e94cdb99] MosaicViews v0.3.4
[2e0e35c7] Moshi v0.3.7
[46d2c3a1] MuladdMacro v0.2.4
⌃ [102ac46a] MultivariatePolynomials v0.5.9
[ffc61752] Mustache v1.0.21
[d8a4904e] MutableArithmetics v1.6.4
[d41bc354] NLSolversBase v7.10.0
[77ba4419] NaNMath v1.1.3
[f09324ee] Netpbm v1.1.1
[8913a72c] NonlinearSolve v4.10.0
⌃ [be0214bd] NonlinearSolveBase v1.8.0
[5959db7a] NonlinearSolveFirstOrder v1.7.0
⌃ [9a2c21bd] NonlinearSolveQuasiNewton v1.5.0
[26075421] NonlinearSolveSpectralMethods v1.3.0
[510215fc] Observables v0.5.5
[6fe1bfb0] OffsetArrays v1.17.0
[52e1d378] OpenEXR v0.3.3
[4d8831e6] OpenSSL v1.5.0
[429524aa] Optim v1.13.2
[bac558e1] OrderedCollections v1.8.1
⌃ [1dea7af3] OrdinaryDiffEq v6.99.0
⌃ [89bda076] OrdinaryDiffEqAdamsBashforthMoulton v1.3.0
⌃ [6ad6398a] OrdinaryDiffEqBDF v1.6.0
⌃ [bbf590c4] OrdinaryDiffEqCore v1.23.0
⌃ [50262376] OrdinaryDiffEqDefault v1.6.0
⌃ [4302a76b] OrdinaryDiffEqDifferentiation v1.11.0
⌃ [9286f039] OrdinaryDiffEqExplicitRK v1.2.0
⌃ [e0540318] OrdinaryDiffEqExponentialRK v1.6.0
⌃ [becaefa8] OrdinaryDiffEqExtrapolation v1.6.0
⌃ [5960d6e9] OrdinaryDiffEqFIRK v1.14.0
⌃ [101fe9f7] OrdinaryDiffEqFeagin v1.2.0
⌃ [d3585ca7] OrdinaryDiffEqFunctionMap v1.3.0
⌃ [d28bc4f8] OrdinaryDiffEqHighOrderRK v1.3.0
⌃ [9f002381] OrdinaryDiffEqIMEXMultistep v1.5.0
⌃ [521117fe] OrdinaryDiffEqLinear v1.4.0
⌃ [1344f307] OrdinaryDiffEqLowOrderRK v1.4.0
⌃ [b0944070] OrdinaryDiffEqLowStorageRK v1.4.0
⌃ [127b3ac7] OrdinaryDiffEqNonlinearSolve v1.12.0
⌃ [c9986a66] OrdinaryDiffEqNordsieck v1.2.0
⌃ [5dd0a6cf] OrdinaryDiffEqPDIRK v1.4.0
⌃ [5b33eab2] OrdinaryDiffEqPRK v1.2.0
⌃ [04162be5] OrdinaryDiffEqQPRK v1.2.0
⌃ [af6ede74] OrdinaryDiffEqRKN v1.3.0
⌃ [43230ef6] OrdinaryDiffEqRosenbrock v1.14.0
⌃ [2d112036] OrdinaryDiffEqSDIRK v1.5.0
⌃ [669c94d9] OrdinaryDiffEqSSPRK v1.4.0
⌃ [e3e12d00] OrdinaryDiffEqStabilizedIRK v1.4.0
⌃ [358294b1] OrdinaryDiffEqStabilizedRK v1.3.0
⌃ [fa646aed] OrdinaryDiffEqSymplecticRK v1.5.0
⌃ [b1df2697] OrdinaryDiffEqTsit5 v1.3.0
⌃ [79d7bb75] OrdinaryDiffEqVerner v1.4.0
[90014a1f] PDMats v0.11.35
[f57f5aa1] PNGFiles v0.4.4
[19eb6ba3] Packing v0.5.1
[5432bcbf] PaddedViews v0.5.12
[d96e819e] Parameters v0.12.3
[69de0a69] Parsers v2.8.3
[eebad327] PkgVersion v0.3.3
[ccf2f8ad] PlotThemes v3.3.0
[995b91a9] PlotUtils v1.4.3
[91a5bcdd] Plots v1.40.19
[e409e4f3] PoissonRandom v0.4.6
[f517fe37] Polyester v0.7.18
[1d0040c9] PolyesterWeave v0.2.2
[647866c9] PolygonOps v0.1.2
⌃ [f27b6e38] Polynomials v4.0.21
[85a6dd25] PositiveFactorizations v0.2.4
[d236fae5] PreallocationTools v0.4.33
⌅ [aea7be01] PrecompileTools v1.2.1
[21216c6a] Preferences v1.5.0
[08abe8d2] PrettyTables v3.0.8
[27ebfcd6] Primes v0.5.7
[92933f4c] ProgressMeter v1.11.0
[43287f4e] PtrArrays v1.3.0
[4b34888f] QOI v1.0.1
[1fd47b50] QuadGK v2.11.2
[74087812] Random123 v1.7.1
[e6cf234a] RandomNumbers v1.6.0
[b3c3ace0] RangeArrays v0.3.2
[c84ed2f1] Ratios v0.4.5
[b4db0fb7] ReactionNetworkImporters v0.16.1
[3cdcf5f2] RecipesBase v1.3.4
[01d81517] RecipesPipeline v0.6.12
⌃ [731186ca] RecursiveArrayTools v3.36.0
[189a3867] Reexport v1.2.2
[05181044] RelocatableFolders v1.0.1
[ae029012] Requires v1.3.1
[ae5879a3] ResettableStacks v1.1.1
[79098fc4] Rmath v0.8.0
[5eaf0fd0] RoundingEmulator v0.2.1
[7e49a35a] RuntimeGeneratedFunctions v0.5.15
[9dfe8606] SCCNonlinearSolve v1.4.0
[fdea26ae] SIMD v3.7.1
[94e857df] SIMDTypes v0.1.0
⌅ [0bca4576] SciMLBase v2.84.0
[31c91b34] SciMLBenchmarks v0.1.3
⌃ [19f34311] SciMLJacobianOperators v0.1.5
⌅ [c0aeaf25] SciMLOperators v0.3.13
[431bcebd] SciMLPublic v1.0.0
[53ae85a6] SciMLStructures v1.7.0
[6c6a2e73] Scratch v1.3.0
[efcf1570] Setfield v1.1.2
[65257c39] ShaderAbstractions v0.5.0
[992d4aef] Showoff v1.0.3
[73760f76] SignedDistanceFields v0.4.0
[777ac1f9] SimpleBufferStream v1.2.0
[727e6d20] SimpleNonlinearSolve v2.7.0
[699a6c99] SimpleTraits v0.9.5
[ce78b400] SimpleUnPack v1.1.0
[45858cf5] Sixel v0.1.5
[a2af1166] SortingAlgorithms v1.2.2
[0a514795] SparseMatrixColorings v0.4.21
[276daf66] SpecialFunctions v2.5.1
[860ef19b] StableRNGs v1.0.3
[cae243ae] StackViews v0.1.2
[aedffcd0] Static v1.2.0
[0d7ed370] StaticArrayInterface v1.8.0
[90137ffa] StaticArrays v1.9.15
[1e83bf80] StaticArraysCore v1.4.3
[82ae8749] StatsAPI v1.7.1
[2913bbd2] StatsBase v0.34.6
[4c63d2b9] StatsFuns v1.5.0
[7792a7ef] StrideArraysCore v0.5.8
[69024149] StringEncodings v0.3.7
[892a3eda] StringManipulation v0.4.1
[09ab397b] StructArrays v0.7.1
⌃ [2efcf032] SymbolicIndexingInterface v0.3.38
[19f23fe9] SymbolicLimits v0.2.2
[d1185830] SymbolicUtils v3.31.0
[0c5d862f] Symbolics v6.52.0
[3783bdb8] TableTraits v1.0.1
[bd369af6] Tables v1.12.1
[ed4db957] TaskLocalValues v0.1.3
[62fd8b95] TensorCore v0.1.1
[8ea1fca8] TermInterface v2.0.0
[1c621080] TestItems v1.0.0
[8290d209] ThreadingUtilities v0.5.5
[731e570b] TiffImages v0.11.6
[a759f4b9] TimerOutputs v0.5.29
[0796e94c] Tokenize v0.5.29
[3bb67fe8] TranscodingStreams v0.11.3
[410a4b4d] Tricks v0.1.12
[981d1d27] TriplotBase v0.1.0
[781d530d] TruncatedStacktraces v1.4.0
[5c2747f8] URIs v1.6.1
[3a884ed6] UnPack v1.0.2
[1cfade01] UnicodeFun v0.4.1
[1986cc42] Unitful v1.24.0
[45397f5d] UnitfulLatexify v1.7.0
[a7c27f48] Unityper v0.1.6
[41fe7b60] Unzip v0.2.0
[81def892] VersionParsing v1.3.0
[44d3d7a6] Weave v0.10.12
[e3aaa7dc] WebP v0.1.3
[efce3f68] WoodburyMatrices v1.0.0
[95ff35a0] XSteam v0.3.0 `https://github.com/hzgzh/XSteam.jl.git#f2a1c58`
[ddb6d928] YAML v0.4.14
[c2297ded] ZMQ v1.4.1
[6e34b625] Bzip2_jll v1.0.9+0
[4e9b3aee] CRlibm_jll v1.0.1+0
[83423d85] Cairo_jll v1.18.5+0
[ee1fde0b] Dbus_jll v1.16.2+0
[5ae413db] EarCut_jll v2.2.4+0
[2702e6a9] EpollShim_jll v0.0.20230411+1
[2e619515] Expat_jll v2.7.1+0
⌅ [b22a6f82] FFMPEG_jll v6.1.3+0
[f5851436] FFTW_jll v3.3.11+0
[a3f928ae] Fontconfig_jll v2.17.1+0
[d7e528f0] FreeType2_jll v2.13.4+0
[559328eb] FriBidi_jll v1.0.17+0
[0656b61e] GLFW_jll v3.4.0+2
[d2c73de3] GR_jll v0.73.17+0
[b0724c58] GettextRuntime_jll v0.22.4+0
[59f7168a] Giflib_jll v5.2.3+0
[020c3dae] Git_LFS_jll v3.7.0+0
[f8c6e375] Git_jll v2.51.0+0
[7746bdde] Glib_jll v2.84.3+0
[3b182d85] Graphite2_jll v1.3.15+0
[2e76f6c2] HarfBuzz_jll v8.5.1+0
[905a6f67] Imath_jll v3.1.11+0
[1d5cc7b8] IntelOpenMP_jll v2025.2.0+0
[aacddb02] JpegTurbo_jll v3.1.2+0
[c1c5ebd0] LAME_jll v3.100.3+0
[88015f11] LERC_jll v4.0.1+0
[1d63c593] LLVMOpenMP_jll v18.1.8+0
[dd4b983a] LZO_jll v2.10.3+0
[e9f186c6] Libffi_jll v3.4.7+0
[7e76a0d4] Libglvnd_jll v1.7.1+1
[94ce4f54] Libiconv_jll v1.18.0+0
[4b2f31a3] Libmount_jll v2.41.1+0
[89763e89] Libtiff_jll v4.7.1+0
[38a345b3] Libuuid_jll v2.41.1+0
[856f044c] MKL_jll v2025.2.0+0
[e7412a2a] Ogg_jll v1.3.6+0
[6cdc7f73] OpenBLASConsistentFPCSR_jll v0.3.29+0
[18a262bb] OpenEXR_jll v3.2.4+0
[9bd350c2] OpenSSH_jll v10.0.1+0
[458c3c95] OpenSSL_jll v3.5.2+0
[efe28fd5] OpenSpecFun_jll v0.5.6+0
[91d4177d] Opus_jll v1.5.2+0
[36c8627f] Pango_jll v1.56.3+0
⌅ [30392449] Pixman_jll v0.44.2+0
[c0090381] Qt6Base_jll v6.8.2+1
[629bc702] Qt6Declarative_jll v6.8.2+1
[ce943373] Qt6ShaderTools_jll v6.8.2+1
[e99dba38] Qt6Wayland_jll v6.8.2+1
[f50d1b31] Rmath_jll v0.5.1+0
[a44049a8] Vulkan_Loader_jll v1.3.243+0
[a2964d1f] Wayland_jll v1.24.0+0
[ffd25f8a] XZ_jll v5.8.1+0
[f67eecfb] Xorg_libICE_jll v1.1.2+0
[c834827a] Xorg_libSM_jll v1.2.6+0
[4f6342f7] Xorg_libX11_jll v1.8.12+0
[0c0b7dd1] Xorg_libXau_jll v1.0.13+0
[935fb764] Xorg_libXcursor_jll v1.2.4+0
[a3789734] Xorg_libXdmcp_jll v1.1.6+0
[1082639a] Xorg_libXext_jll v1.3.7+0
[d091e8ba] Xorg_libXfixes_jll v6.0.1+0
[a51aa0fd] Xorg_libXi_jll v1.8.3+0
[d1454406] Xorg_libXinerama_jll v1.1.6+0
[ec84b674] Xorg_libXrandr_jll v1.5.5+0
[ea2f1a96] Xorg_libXrender_jll v0.9.12+0
[c7cfdc94] Xorg_libxcb_jll v1.17.1+0
[cc61e674] Xorg_libxkbfile_jll v1.1.3+0
[e920d4aa] Xorg_xcb_util_cursor_jll v0.1.5+0
[12413925] Xorg_xcb_util_image_jll v0.4.1+0
[2def613f] Xorg_xcb_util_jll v0.4.1+0
[975044d2] Xorg_xcb_util_keysyms_jll v0.4.1+0
[0d47668e] Xorg_xcb_util_renderutil_jll v0.3.10+0
[c22f9ab0] Xorg_xcb_util_wm_jll v0.4.2+0
[35661453] Xorg_xkbcomp_jll v1.4.7+0
[33bec58e] Xorg_xkeyboard_config_jll v2.44.0+0
[c5fb5394] Xorg_xtrans_jll v1.6.0+0
[8f1865be] ZeroMQ_jll v4.3.6+0
[3161d3a3] Zstd_jll v1.5.7+1
[35ca27e7] eudev_jll v3.2.14+0
[214eeab7] fzf_jll v0.61.1+0
[9a68df92] isoband_jll v0.2.3+0
[a4ae2306] libaom_jll v3.12.1+0
[0ac62f75] libass_jll v0.17.4+0
[1183f4f0] libdecor_jll v0.2.2+0
[2db6ffa8] libevdev_jll v1.13.4+0
[f638f0a6] libfdk_aac_jll v2.0.4+0
[36db933b] libinput_jll v1.28.1+0
[b53b4c65] libpng_jll v1.6.50+0
[075b6546] libsixel_jll v1.10.5+0
[a9144af2] libsodium_jll v1.0.21+0
[f27f6e37] libvorbis_jll v1.3.8+0
[c5f90fcd] libwebp_jll v1.6.0+0
[009596ad] mtdev_jll v1.1.7+0
[1317d2d5] oneTBB_jll v2022.0.0+0
[1270edf5] x264_jll v10164.0.1+0
[dfaa095f] x265_jll v4.1.0+0
[d8fb68d0] xkbcommon_jll v1.9.2+0
[0dad84c5] ArgTools v1.1.1
[56f22d72] Artifacts
[2a0f44e3] Base64
[8bf52ea8] CRC32c
[ade2ca70] Dates
[8ba89e20] Distributed
[f43a241f] Downloads v1.6.0
[7b1f6079] FileWatching
[9fa8497b] Future
[b77e0a4c] InteractiveUtils
[4af54fe1] LazyArtifacts
[b27032c2] LibCURL v0.6.4
[76f85450] LibGit2
[8f399da3] Libdl
[37e2e46d] LinearAlgebra
[56ddb016] Logging
[d6f4376e] Markdown
[a63ad114] Mmap
[ca575930] NetworkOptions v1.2.0
[44cfe95a] Pkg v1.10.0
[de0858da] Printf
[9abbd945] Profile
[3fa0cd96] REPL
[9a3f8284] Random
[ea8e919c] SHA v0.7.0
[9e88b42a] Serialization
[1a1011a3] SharedArrays
[6462fe0b] Sockets
[2f01184e] SparseArrays v1.10.0
[10745b16] Statistics v1.10.0
[4607b0f0] SuiteSparse
[fa267f1f] TOML v1.0.3
[a4e569a6] Tar v1.10.0
[8dfed614] Test
[cf7118a7] UUIDs
[4ec0a83e] Unicode
[e66e0078] CompilerSupportLibraries_jll v1.1.1+0
[deac9b47] LibCURL_jll v8.4.0+0
[e37daf67] LibGit2_jll v1.6.4+0
[29816b5a] LibSSH2_jll v1.11.0+1
[c8ffd9c3] MbedTLS_jll v2.28.2+1
[14a3606d] MozillaCACerts_jll v2023.1.10
[4536629a] OpenBLAS_jll v0.3.23+4
[05823500] OpenLibm_jll v0.8.1+4
[efcefdf7] PCRE2_jll v10.42.0+1
[bea87d4a] SuiteSparse_jll v7.2.1+1
[83775a58] Zlib_jll v1.2.13+1
[8e850b90] libblastrampoline_jll v5.11.0+0
[8e850ede] nghttp2_jll v1.52.0+1
[3f19e933] p7zip_jll v17.4.0+2
Info Packages marked with ⌃ and ⌅ have new versions available. Those with ⌃ may be upgradable, but those with ⌅ are restricted by compatibility constraints from upgrading. To see why use `status --outdated -m`
Warning The project dependencies or compat requirements have changed since the manifest was last resolved. It is recommended to `Pkg.resolve()` or consider `Pkg.update()` if necessary.