In this notebook we will benchmark a real-world biological model from a paper entitled Magnetic dipole with a flexible tail as a self-propelling microdevice. This is a system of PDEs representing a Kirchhoff model of an elastic rod, where the equations of motion are given by the Rouse approximation with free boundary conditions.
First we will show the full model implementation. It is not necessary to understand the full model specification in order to understand the benchmark results, but it's all contained here for completeness. The model is highly optimized, with all internal vectors pre-cached, loops unrolled for efficiency (along with @simd
annotations), a pre-defined Jacobian, matrix multiplications are all in-place, etc. Thus this model is a good stand-in for other optimized PDE solving cases.
The model is thus defined as follows:
using OrdinaryDiffEq, ODEInterfaceDiffEq, Sundials, DiffEqDevTools, LSODA using LinearAlgebra using Plots gr()
Plots.GRBackend()
const T = Float64 abstract type AbstractFilamentCache end abstract type AbstractMagneticForce end abstract type AbstractInextensibilityCache end abstract type AbstractSolver end abstract type AbstractSolverCache end
struct FerromagneticContinuous <: AbstractMagneticForce ω :: T F :: Vector{T} end mutable struct FilamentCache{ MagneticForce <: AbstractMagneticForce, InextensibilityCache <: AbstractInextensibilityCache, SolverCache <: AbstractSolverCache } <: AbstractFilamentCache N :: Int μ :: T Cm :: T x :: SubArray{T,1,Vector{T},Tuple{StepRange{Int,Int}},true} y :: SubArray{T,1,Vector{T},Tuple{StepRange{Int,Int}},true} z :: SubArray{T,1,Vector{T},Tuple{StepRange{Int,Int}},true} A :: Matrix{T} P :: InextensibilityCache F :: MagneticForce Sc :: SolverCache end
struct NoHydroProjectionCache <: AbstractInextensibilityCache J :: Matrix{T} P :: Matrix{T} J_JT :: Matrix{T} J_JT_LDLT :: LinearAlgebra.LDLt{T, SymTridiagonal{T}} P0 :: Matrix{T} NoHydroProjectionCache(N::Int) = new( zeros(N, 3*(N+1)), # J zeros(3*(N+1), 3*(N+1)), # P zeros(N,N), # J_JT LinearAlgebra.LDLt{T,SymTridiagonal{T}}(SymTridiagonal(zeros(N), zeros(N-1))), zeros(N, 3*(N+1)) ) end
struct DiffEqSolverCache <: AbstractSolverCache S1 :: Vector{T} S2 :: Vector{T} DiffEqSolverCache(N::Integer) = new(zeros(T,3*(N+1)), zeros(T,3*(N+1))) end
function FilamentCache(N=20; Cm=32, ω=200, Solver=SolverDiffEq) InextensibilityCache = NoHydroProjectionCache SolverCache = DiffEqSolverCache tmp = zeros(3*(N+1)) FilamentCache{FerromagneticContinuous, InextensibilityCache, SolverCache}( N, N+1, Cm, view(tmp,1:3:3*(N+1)), view(tmp,2:3:3*(N+1)), view(tmp,3:3:3*(N+1)), zeros(3*(N+1), 3*(N+1)), # A InextensibilityCache(N), # P FerromagneticContinuous(ω, zeros(3*(N+1))), SolverCache(N) ) end
Main.WeaveSandBox0.FilamentCache
function stiffness_matrix!(f::AbstractFilamentCache) N, μ, A = f.N, f.μ, f.A @inbounds for j in axes(A, 2), i in axes(A, 1) A[i, j] = j == i ? 1 : 0 end @inbounds for i in 1 : 3 A[i,i] = 1 A[i,3+i] = -2 A[i,6+i] = 1 A[3+i,i] = -2 A[3+i,3+i] = 5 A[3+i,6+i] = -4 A[3+i,9+i] = 1 A[3*(N-1)+i,3*(N-3)+i] = 1 A[3*(N-1)+i,3*(N-2)+i] = -4 A[3*(N-1)+i,3*(N-1)+i] = 5 A[3*(N-1)+i,3*N+i] = -2 A[3*N+i,3*(N-2)+i] = 1 A[3*N+i,3*(N-1)+i] = -2 A[3*N+i,3*N+i] = 1 for j in 2 : N-2 A[3*j+i,3*j+i] = 6 A[3*j+i,3*(j-1)+i] = -4 A[3*j+i,3*(j+1)+i] = -4 A[3*j+i,3*(j-2)+i] = 1 A[3*j+i,3*(j+2)+i] = 1 end end rmul!(A, -μ^4) nothing end
stiffness_matrix! (generic function with 1 method)
function update_separate_coordinates!(f::AbstractFilamentCache, r) N, x, y, z = f.N, f.x, f.y, f.z @inbounds for i in 1 : length(x) x[i] = r[3*i-2] y[i] = r[3*i-1] z[i] = r[3*i] end nothing end function update_united_coordinates!(f::AbstractFilamentCache, r) N, x, y, z = f.N, f.x, f.y, f.z @inbounds for i in 1 : length(x) r[3*i-2] = x[i] r[3*i-1] = y[i] r[3*i] = z[i] end nothing end function update_united_coordinates(f::AbstractFilamentCache) r = zeros(T, 3*length(f.x)) update_united_coordinates!(f, r) r end
update_united_coordinates (generic function with 1 method)
function initialize!(initial_conf_type::Symbol, f::AbstractFilamentCache) N, x, y, z = f.N, f.x, f.y, f.z if initial_conf_type == :StraightX x .= range(0, stop=1, length=N+1) y .= 0 z .= 0 else error("Unknown initial configuration requested.") end update_united_coordinates(f) end
initialize! (generic function with 1 method)
function magnetic_force!(::FerromagneticContinuous, f::AbstractFilamentCache, t) # TODO: generalize this for different magnetic fields as well N, μ, Cm, ω, F = f.N, f.μ, f.Cm, f.F.ω, f.F.F F[1] = -μ * Cm * cos(ω*t) F[2] = -μ * Cm * sin(ω*t) F[3*(N+1)-2] = μ * Cm * cos(ω*t) F[3*(N+1)-1] = μ * Cm * sin(ω*t) nothing end
magnetic_force! (generic function with 1 method)
struct SolverDiffEq <: AbstractSolver end function (f::FilamentCache)(dr, r, p, t) @views f.x, f.y, f.z = r[1:3:end], r[2:3:end], r[3:3:end] jacobian!(f) projection!(f) magnetic_force!(f.F, f, t) A, P, F, S1, S2 = f.A, f.P.P, f.F.F, f.Sc.S1, f.Sc.S2 # implement dr = P * (A*r + F) in an optimized way to avoid temporaries mul!(S1, A, r) S1 .+= F mul!(S2, P, S1) copyto!(dr, S2) return dr end
function jacobian!(f::FilamentCache) N, x, y, z, J = f.N, f.x, f.y, f.z, f.P.J @inbounds for i in 1 : N J[i, 3*i-2] = -2 * (x[i+1]-x[i]) J[i, 3*i-1] = -2 * (y[i+1]-y[i]) J[i, 3*i] = -2 * (z[i+1]-z[i]) J[i, 3*(i+1)-2] = 2 * (x[i+1]-x[i]) J[i, 3*(i+1)-1] = 2 * (y[i+1]-y[i]) J[i, 3*(i+1)] = 2 * (z[i+1]-z[i]) end nothing end
jacobian! (generic function with 1 method)
function projection!(f::FilamentCache) # implement P[:] = I - J'/(J*J')*J in an optimized way to avoid temporaries J, P, J_JT, J_JT_LDLT, P0 = f.P.J, f.P.P, f.P.J_JT, f.P.J_JT_LDLT, f.P.P0 mul!(J_JT, J, J') LDLt_inplace!(J_JT_LDLT, J_JT) ldiv!(P0, J_JT_LDLT, J) mul!(P, P0', J) subtract_from_identity!(P) nothing end
projection! (generic function with 1 method)
function subtract_from_identity!(A) lmul!(-1, A) @inbounds for i in 1 : size(A,1) A[i,i] += 1 end nothing end
subtract_from_identity! (generic function with 1 method)
function LDLt_inplace!(L::LinearAlgebra.LDLt{T,SymTridiagonal{T}}, A::Matrix{T}) where {T<:Real} n = size(A,1) dv, ev = L.data.dv, L.data.ev @inbounds for (i,d) in enumerate(diagind(A)) dv[i] = A[d] end @inbounds for (i,d) in enumerate(diagind(A,-1)) ev[i] = A[d] end @inbounds @simd for i in 1 : n-1 ev[i] /= dv[i] dv[i+1] -= abs2(ev[i]) * dv[i] end L end
LDLt_inplace! (generic function with 1 method)
Let's take a look at what results of the model look like:
function run(::SolverDiffEq; N=20, Cm=32, ω=200, time_end=1., solver=TRBDF2(autodiff=false), reltol=1e-6, abstol=1e-6) f = FilamentCache(N, Solver=SolverDiffEq, Cm=Cm, ω=ω) r0 = initialize!(:StraightX, f) stiffness_matrix!(f) prob = ODEProblem(ODEFunction(f, jac=(J, u, p, t)->(mul!(J, f.P.P, f.A); nothing)), r0, (0., time_end)) sol = solve(prob, solver, dense=false, reltol=reltol, abstol=abstol) end
run (generic function with 1 method)
This method runs the model with the TRBDF2
method and the default parameters.
sol = run(SolverDiffEq()) plot(sol,vars = (0,25))
The model quickly falls into a highly oscillatory mode which then dominates throughout the rest of the solution.
Now let's build the problem and solve it once at high accuracy to get a reference solution:
N=20 f = FilamentCache(N, Solver=SolverDiffEq) r0 = initialize!(:StraightX, f) stiffness_matrix!(f) prob = ODEProblem(f, r0, (0., 0.01)) sol = solve(prob, Vern9(), reltol=1e-14, abstol=1e-14) test_sol = TestSolution(sol);
abstols=1 ./10 .^(3:8) reltols=1 ./10 .^(3:8) setups = [ Dict(:alg => CVODE_BDF()), Dict(:alg => Rosenbrock23(autodiff=false)), Dict(:alg => Rodas4(autodiff=false)), Dict(:alg => radau()), Dict(:alg=>Exprb43(autodiff=false)), Dict(:alg=>Exprb32(autodiff=false)), Dict(:alg=>ImplicitEulerExtrapolation(autodiff=false)), Dict(:alg=>ImplicitDeuflhardExtrapolation(autodiff=false)), Dict(:alg=>ImplicitHairerWannerExtrapolation(autodiff=false)), ]; wp = WorkPrecisionSet(prob, abstols, reltols, setups; appxsol=test_sol, maxiters=Int(1e6), verbose = false) plot(wp)
Rosenbrock23, Rodas4, Exprb32, Exprb43, extrapolation methods, and Rodas5 do not perform well at all and are thus dropped from future tests. For reference, they are in the 10^(2.5) range in for their most accurate run (with ImplicitEulerExtrapolation takes over a day to run, and had to be prematurely stopped), so about 500x slower than CVODE_BDF and thus make the benchmarks take forever. It looks like radau
fails on this problem with high tolerance so its values should be ignored since it exits early. It is thus removed from the next sections.
The EPIRK methods currently do not work on this problem
sol = solve(prob, EPIRK4s3B(autodiff=false), dt=2^-3)
ERROR: ArgumentError: matrix contains Infs or NaNs
but would be called like:
abstols=1 ./10 .^(3:5) reltols=1 ./10 .^(3:5) setups = [ Dict(:alg => CVODE_BDF()), Dict(:alg => HochOst4(),:dts=>2.0.^(-3:-1:-5)), Dict(:alg => EPIRK4s3B(),:dts=>2.0.^(-3:-1:-5)), Dict(:alg => EXPRB53s3(),:dts=>2.0.^(-3:-1:-5)), ]; wp = WorkPrecisionSet(prob, abstols, reltols, setups; appxsol=test_sol, maxiters=Int(1e6), verbose = false) plot(wp)
abstols=1 ./10 .^(3:8) reltols=1 ./10 .^(3:8) setups = [ Dict(:alg => CVODE_BDF()), Dict(:alg => BS3()), Dict(:alg => Tsit5()), Dict(:alg => ImplicitEuler(autodiff=false)), Dict(:alg => Trapezoid(autodiff=false)), Dict(:alg => TRBDF2(autodiff=false)), Dict(:alg => rodas()), Dict(:alg => dop853()), Dict(:alg => lsoda()), Dict(:alg => ROCK2()), Dict(:alg => ROCK4()), Dict(:alg => ESERK5()) ]; wp = WorkPrecisionSet(prob, abstols, reltols, setups; appxsol=test_sol, maxiters=Int(1e6), verbose = false) plot(wp)
abstols=1 ./10 .^(3:8) reltols=1 ./10 .^(3:8) setups = [ Dict(:alg => CVODE_BDF()), Dict(:alg => ImplicitEuler(autodiff=false)), Dict(:alg => TRBDF2(autodiff=false)), Dict(:alg => KenCarp3(autodiff=false)), Dict(:alg => KenCarp4(autodiff=false)), Dict(:alg => Kvaerno3(autodiff=false)), Dict(:alg => Kvaerno4(autodiff=false)), Dict(:alg => ABDF2(autodiff=false)), Dict(:alg => QNDF(autodiff=false)), Dict(:alg => RadauIIA5(autodiff=false)), ]; wp = WorkPrecisionSet(prob, abstols, reltols, setups; appxsol=test_sol, maxiters=Int(1e6), verbose = false) plot(wp)
abstols=1 ./10 .^(3:8) reltols=1 ./10 .^(3:8) setups = [ Dict(:alg => CVODE_BDF()), Dict(:alg => CVODE_BDF(linear_solver=:GMRES)), Dict(:alg => TRBDF2(autodiff=false)), Dict(:alg => TRBDF2(autodiff=false,linsolve=LinSolveGMRES())), Dict(:alg => KenCarp4(autodiff=false)), Dict(:alg => KenCarp4(autodiff=false,linsolve=LinSolveGMRES())), ]; names = [ "CVODE-BDF", "CVODE-BDF (GMRES)", "TRBDF2", "TRBDF2 (GMRES)", "KenCarp4", "KenCarp4 (GMRES)", ]; wp = WorkPrecisionSet(prob, abstols, reltols, setups; names=names, appxsol=test_sol, maxiters=Int(1e6), verbose = false) plot(wp)
abstols=1 ./10 .^(3:8) reltols=1 ./10 .^(3:8) setups = [ Dict(:alg => CVODE_BDF()), Dict(:alg => Trapezoid(autodiff=false)), Dict(:alg => TRBDF2(autodiff=false)), Dict(:alg => rodas()), Dict(:alg => lsoda()), Dict(:alg => KenCarp3(autodiff=false)), Dict(:alg => KenCarp4(autodiff=false)), Dict(:alg => Kvaerno3(autodiff=false)), Dict(:alg => Kvaerno4(autodiff=false)), Dict(:alg => ROCK2()), Dict(:alg => ROCK4()), Dict(:alg => ESERK5()) ]; wp = WorkPrecisionSet(prob, abstols, reltols, setups; appxsol=test_sol, maxiters=Int(1e6), verbose = false) plot(wp)
Timeseries errors seem to match final point errors very closely in this problem, so these are turned off in future benchmarks.
(Confirmed in the other cases)
abstols=1 ./10 .^(3:8) reltols=1 ./10 .^(3:8) setups = [ Dict(:alg => CVODE_BDF()), Dict(:alg => TRBDF2(autodiff=false)), Dict(:alg => KenCarp3(autodiff=false)), Dict(:alg => KenCarp4(autodiff=false)), Dict(:alg => Kvaerno3(autodiff=false)), Dict(:alg => Kvaerno4(autodiff=false)), Dict(:alg => ROCK2()), Dict(:alg => ROCK4()), Dict(:alg => ESERK5()) ]; wp = WorkPrecisionSet(prob, abstols, reltols, setups; appxsol=test_sol, maxiters=Int(1e6), verbose = false, dense_errors = true, error_estimate=:L2) plot(wp)
Dense errors seem to match timeseries errors very closely in this problem, so these are turned off in future benchmarks.
(Confirmed in the other cases)
abstols=1 ./10 .^(6:12) reltols=1 ./10 .^(6:12) setups = [ Dict(:alg => CVODE_BDF()), Dict(:alg => Vern7()), Dict(:alg => Vern9()), Dict(:alg => TRBDF2(autodiff=false)), Dict(:alg => dop853()), Dict(:alg => ROCK4()) ]; wp = WorkPrecisionSet(prob, abstols, reltols, setups; appxsol=test_sol, maxiters=Int(1e6), verbose = false) plot(wp)
abstols=1 ./10 .^(6:12) reltols=1 ./10 .^(6:12) setups = [ Dict(:alg => CVODE_BDF()), Dict(:alg => radau()), Dict(:alg => RadauIIA5(autodiff=false)), Dict(:alg => TRBDF2(autodiff=false)), Dict(:alg => Kvaerno3(autodiff=false)), Dict(:alg => KenCarp3(autodiff=false)), Dict(:alg => Kvaerno4(autodiff=false)), Dict(:alg => KenCarp4(autodiff=false)), Dict(:alg => Kvaerno5(autodiff=false)), Dict(:alg => KenCarp5(autodiff=false)), Dict(:alg => lsoda()), ]; wp = WorkPrecisionSet(prob, abstols, reltols, setups; appxsol=test_sol, maxiters=Int(1e6), verbose = false) plot(wp)
abstols=1 ./10 .^(6:12) reltols=1 ./10 .^(6:12) setups = [ Dict(:alg => CVODE_BDF()), Dict(:alg => radau()), Dict(:alg => RadauIIA5(autodiff=false)), Dict(:alg => TRBDF2(autodiff=false)), Dict(:alg => Kvaerno3(autodiff=false)), Dict(:alg => KenCarp3(autodiff=false)), Dict(:alg => Kvaerno4(autodiff=false)), Dict(:alg => KenCarp4(autodiff=false)), Dict(:alg => Kvaerno5(autodiff=false)), Dict(:alg => KenCarp5(autodiff=false)), Dict(:alg => lsoda()), ]; wp = WorkPrecisionSet(prob, abstols, reltols, setups; appxsol=test_sol, maxiters=Int(1e6), verbose = false, error_estimate = :l2) plot(wp)
abstols=1 ./10 .^(6:12) reltols=1 ./10 .^(6:12) setups = [ Dict(:alg => CVODE_BDF()), Dict(:alg => radau()), Dict(:alg => RadauIIA5(autodiff=false)), Dict(:alg => TRBDF2(autodiff=false)), Dict(:alg => Kvaerno3(autodiff=false)), Dict(:alg => KenCarp3(autodiff=false)), Dict(:alg => Kvaerno4(autodiff=false)), Dict(:alg => KenCarp4(autodiff=false)), Dict(:alg => Kvaerno5(autodiff=false)), Dict(:alg => KenCarp5(autodiff=false)), Dict(:alg => lsoda()), ]; wp = WorkPrecisionSet(prob, abstols, reltols, setups; appxsol=test_sol, maxiters=Int(1e6), verbose = false, dense_errors=true, error_estimate = :L2) plot(wp)
In the previous cases the analytical Jacobian is given and is used by the solvers. Now we will solve the same problem without the analytical Jacobian.
Note that the pre-caching means that the model is not compatible with autodifferentiation by ForwardDiff. Thus all of the native Julia solvers are set to autodiff=false
to use DiffEqDiffTools.jl's numerical differentiation backend. We'll only benchmark the methods that did well before.
N=20 f = FilamentCache(N, Solver=SolverDiffEq) r0 = initialize!(:StraightX, f) stiffness_matrix!(f) prob = ODEProblem(ODEFunction(f, jac=nothing), r0, (0., 0.01)) sol = solve(prob, Vern9(), reltol=1e-14, abstol=1e-14) test_sol = TestSolution(sol.t, sol.u);
abstols=1 ./10 .^(3:8) reltols=1 ./10 .^(3:8) setups = [ Dict(:alg => CVODE_BDF()), Dict(:alg => BS3()), Dict(:alg => Tsit5()), Dict(:alg => ImplicitEuler(autodiff=false)), Dict(:alg => Trapezoid(autodiff=false)), Dict(:alg => TRBDF2(autodiff=false)), Dict(:alg => rodas()), Dict(:alg => dop853()), Dict(:alg => lsoda()) ]; wp = WorkPrecisionSet(prob, abstols, reltols, setups; appxsol=test_sol, maxiters=Int(1e6), verbose = false) plot(wp)
abstols=1 ./10 .^(3:8) reltols=1 ./10 .^(3:8) setups = [ Dict(:alg => CVODE_BDF()), Dict(:alg => BS3()), Dict(:alg => Tsit5()), Dict(:alg => ImplicitEuler(autodiff=false)), Dict(:alg => Trapezoid(autodiff=false)), Dict(:alg => TRBDF2(autodiff=false)), Dict(:alg => rodas()), Dict(:alg => dop853()), Dict(:alg => lsoda()), Dict(:alg => ROCK2()), Dict(:alg => ROCK4()), Dict(:alg => ESERK5()) ]; wp = WorkPrecisionSet(prob, abstols, reltols, setups; appxsol=test_sol, maxiters=Int(1e6), verbose = false) plot(wp)
abstols=1 ./10 .^(3:8) reltols=1 ./10 .^(3:8) setups = [ Dict(:alg => CVODE_BDF()), Dict(:alg => CVODE_BDF(linear_solver=:GMRES)), Dict(:alg => TRBDF2(autodiff=false)), Dict(:alg => TRBDF2(autodiff=false,linsolve=LinSolveGMRES())), Dict(:alg => KenCarp4(autodiff=false)), Dict(:alg => KenCarp4(autodiff=false,linsolve=LinSolveGMRES())), ]; names = [ "CVODE-BDF", "CVODE-BDF (GMRES)", "TRBDF2", "TRBDF2 (GMRES)", "KenCarp4", "KenCarp4 (GMRES)", ]; wp = WorkPrecisionSet(prob, abstols, reltols, setups; names=names, appxsol=test_sol, maxiters=Int(1e6), verbose = false) plot(wp)
abstols=1 ./10 .^(6:12) reltols=1 ./10 .^(6:12) setups = [ Dict(:alg => CVODE_BDF()), Dict(:alg => radau()), Dict(:alg => RadauIIA5(autodiff=false)), Dict(:alg => TRBDF2(autodiff=false)), Dict(:alg => Kvaerno3(autodiff=false)), Dict(:alg => KenCarp3(autodiff=false)), Dict(:alg => Kvaerno4(autodiff=false)), Dict(:alg => KenCarp4(autodiff=false)), Dict(:alg => Kvaerno5(autodiff=false)), Dict(:alg => KenCarp5(autodiff=false)), Dict(:alg => lsoda()), ]; wp = WorkPrecisionSet(prob, abstols, reltols, setups; appxsol=test_sol, maxiters=Int(1e6), verbose = false) plot(wp)
Sundials' CVODE_BDF
does the best in this test. When the Jacobian is given, the ESDIRK methods TRBDF2
and KenCarp3
are able to do almost as well as it until <1e-6
error is needed. When Jacobians are not given, Sundials is the fastest without competition.
using DiffEqBenchmarks DiffEqBenchmarks.bench_footer(WEAVE_ARGS[:folder],WEAVE_ARGS[:file])
These benchmarks are a part of the DiffEqBenchmarks.jl repository, found at: https://github.com/JuliaDiffEq/DiffEqBenchmarks.jl
To locally run this tutorial, do the following commands:
using DiffEqBenchmarks
DiffEqBenchmarks.weave_file("MOLPDE","Filament.jmd")
Computer Information:
Julia Version 1.2.0
Commit c6da87ff4b (2019-08-20 00:03 UTC)
Platform Info:
OS: Linux (x86_64-pc-linux-gnu)
CPU: Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40GHz
WORD_SIZE: 64
LIBM: libopenlibm
LLVM: libLLVM-6.0.1 (ORCJIT, haswell)
Environment:
JULIA_NUM_THREADS = 16
Package Information:
Status: `/home/crackauckas/.julia/dev/DiffEqBenchmarks/Project.toml`
[28f2ccd6-bb30-5033-b560-165f7b14dc2f] ApproxFun 0.11.7
[a134a8b2-14d6-55f6-9291-3336d3ab0209] BlackBoxOptim 0.5.0
[eb300fae-53e8-50a0-950c-e21f52c2b7e0] DiffEqBiological 3.11.0
[f3b72e0c-5b89-59e1-b016-84e28bfd966d] DiffEqDevTools 2.15.0
[1130ab10-4a5a-5621-a13d-e4788d82bd4c] DiffEqParamEstim 1.8.0
[a077e3f3-b75c-5d7f-a0c6-6bc4c8ec64a9] DiffEqProblemLibrary 4.5.1
[ef61062a-5684-51dc-bb67-a0fcdec5c97d] DiffEqUncertainty 1.2.0
[7073ff75-c697-5162-941a-fcdaad2a7d2a] IJulia 1.20.0
[7f56f5a3-f504-529b-bc02-0b1fe5e64312] LSODA 0.6.1
[76087f3c-5699-56af-9a33-bf431cd00edd] NLopt 0.5.1
[c030b06c-0b6d-57c2-b091-7029874bd033] ODE 2.5.0
[54ca160b-1b9f-5127-a996-1867f4bc2a2c] ODEInterface 0.4.6
[09606e27-ecf5-54fc-bb29-004bd9f985bf] ODEInterfaceDiffEq 3.4.0
[1dea7af3-3e70-54e6-95c3-0bf5283fa5ed] OrdinaryDiffEq 5.17.2
[65888b18-ceab-5e60-b2b9-181511a3b968] ParameterizedFunctions 4.2.1
[91a5bcdd-55d7-5caf-9e0b-520d859cae80] Plots 0.26.3
[b4db0fb7-de2a-5028-82bf-5021f5cfa881] ReactionNetworkImporters 0.1.5
[f2c3362d-daeb-58d1-803e-2bc74f2840b4] RecursiveFactorization 0.1.0
[c3572dad-4567-51f8-b174-8c6c989267f4] Sundials 3.7.0
[44d3d7a6-8a23-5bf8-98c5-b353f8df5ec9] Weave 0.9.1
[b77e0a4c-d291-57a0-90e8-8db25a27a240] InteractiveUtils
[d6f4376e-aef5-505a-96c1-9c027394607a] Markdown
[44cfe95a-1eb2-52ea-b672-e2afdf69b78f] Pkg
[9a3f8284-a2c9-5f02-9a11-845980a1fd5c] Random