Fitzhugh-Nagumo Bayesian Parameter Estimation Benchmarks
using DiffEqBayes, BenchmarkTools
using OrdinaryDiffEq, RecursiveArrayTools, Distributions, ParameterizedFunctions, StanSample, DynamicHMC
using Plots, StaticArrays, Turing, LinearAlgebra
gr(fmt=:png)
Plots.GRBackend()
Defining the problem.
The FitzHugh-Nagumo model is a simplified version of Hodgkin-Huxley model and is used to describe an excitable system (e.g. neuron).
fitz = @ode_def FitzhughNagumo begin
dv = v - 0.33*v^3 -w + l
dw = τinv*(v + a - b*w)
end a b τinv l
(::Main.var"##WeaveSandBox#225".FitzhughNagumo{Main.var"##WeaveSandBox#225"
.var"###ParameterizedDiffEqFunction#227", Main.var"##WeaveSandBox#225".var"
###ParameterizedTGradFunction#228", Main.var"##WeaveSandBox#225".var"###Par
ameterizedJacobianFunction#229", Nothing, Nothing, ModelingToolkit.ODESyste
m}) (generic function with 1 method)
prob_ode_fitzhughnagumo = ODEProblem(fitz, [1.0,1.0], (0.0,10.0), [0.7,0.8,1/12.5,0.5])
sol = solve(prob_ode_fitzhughnagumo, Tsit5())
retcode: Success
Interpolation: specialized 4th order "free" interpolation
t: 13-element Vector{Float64}:
0.0
0.1502916178003539
0.6611859977697417
1.4391494636342572
2.5894515498152293
3.760237603808549
5.101014094147208
6.709997158618223
7.604553280596642
8.336547620442024
9.03127910678863
9.55639994619208
10.0
u: 13-element Vector{Vector{Float64}}:
[1.0, 1.0]
[1.0247192356111163, 1.0109189409610948]
[1.0944137320832108, 1.0492393331998289]
[1.1525604499975908, 1.1092966016287371]
[1.1446577644416096, 1.195273810878899]
[1.0557695278493895, 1.2718985704582837]
[0.865959919956831, 1.3388184704641362]
[0.3675855933126252, 1.3735376027635644]
[-0.359442563141841, 1.3493319765636338]
[-1.3772888489033577, 1.2781711287398287]
[-1.905699772833817, 1.1680024379627088]
[-1.9707492682163554, 1.0777291974859278]
[-1.965045343773361, 1.0031251493361766]
sprob_ode_fitzhughnagumo = ODEProblem{false,SciMLBase.FullSpecialize}(fitz, SA[1.0,1.0], (0.0,10.0), SA[0.7,0.8,1/12.5,0.5])
sol = solve(sprob_ode_fitzhughnagumo, Tsit5())
retcode: Success
Interpolation: specialized 4th order "free" interpolation
t: 13-element Vector{Float64}:
0.0
0.1502916178003539
0.6611859977697417
1.4391494636342572
2.5894515498152293
3.760237603808549
5.101014094147208
6.709997158618223
7.604553280596642
8.336547620442024
9.03127910678863
9.55639994619208
10.0
u: 13-element Vector{StaticArraysCore.SVector{2, Float64}}:
[1.0, 1.0]
[1.0247192356111163, 1.0109189409610948]
[1.0944137320832108, 1.0492393331998289]
[1.1525604499975908, 1.1092966016287371]
[1.1446577644416096, 1.195273810878899]
[1.0557695278493895, 1.2718985704582837]
[0.865959919956831, 1.3388184704641362]
[0.3675855933126252, 1.3735376027635644]
[-0.359442563141841, 1.3493319765636338]
[-1.3772888489033577, 1.2781711287398287]
[-1.905699772833817, 1.1680024379627088]
[-1.9707492682163554, 1.0777291974859278]
[-1.965045343773361, 1.0031251493361766]
Data is generated by adding noise to the solution obtained above.
t = collect(range(1,stop=10,length=10))
sig = 0.20
data = convert(Array, VectorOfArray([(sol(t[i]) + sig*randn(2)) for i in 1:length(t)]))
2×10 Matrix{Float64}:
0.6625 1.1411 0.809948 0.834286 … -0.888931 -1.95485 -2.24427
1.16987 1.01141 1.17188 1.34561 1.2748 1.10598 0.988366
Plot of the data and the solution.
scatter(t, data[1,:])
scatter!(t, data[2,:])
plot!(sol)
Priors for the parameters which will be passed for the Bayesian Inference
priors = [truncated(Normal(1.0,0.5),0,1.5), truncated(Normal(1.0,0.5),0,1.5), truncated(Normal(0.0,0.5),0.0,0.5), truncated(Normal(0.5,0.5),0,1)]
4-element Vector{Distributions.Truncated{Distributions.Normal{Float64}, Dis
tributions.Continuous, Float64, Float64, Float64}}:
Truncated(Distributions.Normal{Float64}(μ=1.0, σ=0.5); lower=0.0, upper=1.
5)
Truncated(Distributions.Normal{Float64}(μ=1.0, σ=0.5); lower=0.0, upper=1.
5)
Truncated(Distributions.Normal{Float64}(μ=0.0, σ=0.5); lower=0.0, upper=0.
5)
Truncated(Distributions.Normal{Float64}(μ=0.5, σ=0.5); lower=0.0, upper=1.
0)
Benchmarks
Stan.jl backend
@time bayesian_result_stan = stan_inference(prob_ode_fitzhughnagumo,t,data,priors; delta = 0.65, num_samples = 10_000, print_summary=false, vars=(DiffEqBayes.StanODEData(), InverseGamma(2, 3)))
23.122573 seconds (2.13 M allocations: 145.103 MiB, 0.30% gc time, 6.91% c
ompilation time)
46.149503 seconds (6.77 M allocations: 470.665 MiB, 0.38% gc time, 9.51% c
ompilation time: <1% of which was recompilation)
Chains MCMC chain (10000×6×1 Array{Float64, 3}):
Iterations = 1:1:10000
Number of chains = 1
Samples per chain = 10000
parameters = sigma1.1, sigma1.2, theta_1, theta_2, theta_3, theta_4
internals =
Summary Statistics
parameters mean std mcse ess_bulk ess_tail rha
t ⋯
Symbol Float64 Float64 Float64 Float64 Float64 Float6
4 ⋯
sigma1.1 0.4465 0.1473 0.0111 101.0569 33.7685 1.015
9 ⋯
sigma1.2 0.3606 0.1099 0.0036 986.5857 1476.4564 1.001
1 ⋯
theta_1 0.9020 0.3293 0.0196 335.7560 1564.9912 1.004
0 ⋯
theta_2 0.9067 0.2847 0.0049 3280.5830 4112.6736 1.002
5 ⋯
theta_3 0.0957 0.0439 0.0010 1764.0137 1399.3717 1.000
8 ⋯
theta_4 0.5454 0.1005 0.0052 321.1343 672.9208 1.002
0 ⋯
1 column om
itted
Quantiles
parameters 2.5% 25.0% 50.0% 75.0% 97.5%
Symbol Float64 Float64 Float64 Float64 Float64
sigma1.1 0.2243 0.3509 0.4235 0.5195 0.7903
sigma1.2 0.2041 0.2825 0.3440 0.4181 0.6257
theta_1 0.2291 0.6583 0.9218 1.1626 1.4504
theta_2 0.2907 0.7322 0.9175 1.1104 1.4133
theta_3 0.0285 0.0657 0.0896 0.1185 0.1991
theta_4 0.3821 0.4692 0.5372 0.6073 0.7661
Direct Turing.jl
@model function fitlv(data, prob)
# Prior distributions.
σ ~ InverseGamma(2, 3)
a ~ truncated(Normal(1.0,0.5),0,1.5)
b ~ truncated(Normal(1.0,0.5),0,1.5)
τinv ~ truncated(Normal(0.0,0.5),0.0,0.5)
l ~ truncated(Normal(0.5,0.5),0,1)
# Simulate Lotka-Volterra model.
p = SA[a,b,τinv,l]
_prob = remake(prob, p = p)
predicted = solve(_prob, Tsit5(); saveat=t)
# Observations.
for i in 1:length(predicted)
data[:, i] ~ MvNormal(predicted[i], σ^2 * I)
end
return nothing
end
model = fitlv(data, sprob_ode_fitzhughnagumo)
@time chain = sample(model, Turing.NUTS(0.65), 10000; progress=false)
71.711285 seconds (245.10 M allocations: 42.342 GiB, 6.61% gc time, 30.05%
compilation time)
Chains MCMC chain (10000×17×1 Array{Float64, 3}):
Iterations = 1001:1:11000
Number of chains = 1
Samples per chain = 10000
Wall duration = 63.86 seconds
Compute duration = 63.86 seconds
parameters = σ, a, b, τinv, l
internals = lp, n_steps, is_accept, acceptance_rate, log_density, h
amiltonian_energy, hamiltonian_energy_error, max_hamiltonian_energy_error,
tree_depth, numerical_error, step_size, nom_step_size
Summary Statistics
parameters mean std mcse ess_bulk ess_tail rha
t ⋯
Symbol Float64 Float64 Float64 Float64 Float64 Float6
4 ⋯
σ 0.3027 0.0602 0.0009 4271.7108 5107.9954 1.000
3 ⋯
a 0.9475 0.3241 0.0047 4487.1248 3640.7400 1.000
0 ⋯
b 0.8993 0.2977 0.0043 4509.0980 4239.4574 0.999
9 ⋯
τinv 0.0815 0.0349 0.0006 3351.7321 3974.2185 1.000
4 ⋯
l 0.5219 0.0812 0.0013 3865.9606 3931.8080 1.000
2 ⋯
1 column om
itted
Quantiles
parameters 2.5% 25.0% 50.0% 75.0% 97.5%
Symbol Float64 Float64 Float64 Float64 Float64
σ 0.2118 0.2611 0.2938 0.3350 0.4430
a 0.2469 0.7258 0.9783 1.1989 1.4627
b 0.2746 0.6969 0.9181 1.1213 1.4139
τinv 0.0272 0.0562 0.0772 0.1021 0.1605
l 0.3812 0.4653 0.5154 0.5715 0.6997
Turing.jl backend
@time bayesian_result_turing = turing_inference(prob_ode_fitzhughnagumo,Tsit5(),t,data,priors;num_samples = 10_000)
51.189120 seconds (245.93 M allocations: 38.558 GiB, 7.17% gc time, 20.06%
compilation time)
Chains MCMC chain (10000×17×1 Array{Float64, 3}):
Iterations = 1001:1:11000
Number of chains = 1
Samples per chain = 10000
Wall duration = 48.72 seconds
Compute duration = 48.72 seconds
parameters = theta[1], theta[2], theta[3], theta[4], σ[1]
internals = lp, n_steps, is_accept, acceptance_rate, log_density, h
amiltonian_energy, hamiltonian_energy_error, max_hamiltonian_energy_error,
tree_depth, numerical_error, step_size, nom_step_size
Summary Statistics
parameters mean std mcse ess_bulk ess_tail rha
t ⋯
Symbol Float64 Float64 Float64 Float64 Float64 Float6
4 ⋯
theta[1] 0.9492 0.3167 0.0045 4738.3528 4198.0564 1.000
8 ⋯
theta[2] 0.8994 0.2970 0.0050 3661.5575 4061.6882 0.999
9 ⋯
theta[3] 0.0815 0.0358 0.0006 2892.5687 3574.1292 1.000
1 ⋯
theta[4] 0.5205 0.0810 0.0013 3789.2942 4373.2390 0.999
9 ⋯
σ[1] 0.3010 0.0590 0.0008 5127.0438 5637.4514 1.000
1 ⋯
1 column om
itted
Quantiles
parameters 2.5% 25.0% 50.0% 75.0% 97.5%
Symbol Float64 Float64 Float64 Float64 Float64
theta[1] 0.2723 0.7323 0.9807 1.2004 1.4513
theta[2] 0.2727 0.7002 0.9216 1.1227 1.4075
theta[3] 0.0264 0.0552 0.0772 0.1020 0.1621
theta[4] 0.3789 0.4644 0.5140 0.5683 0.6999
σ[1] 0.2101 0.2589 0.2927 0.3334 0.4387
Conclusion
FitzHugh-Ngumo is a standard problem for parameter estimation studies. In the FitzHugh-Nagumo model the parameters to be estimated were [0.7,0.8,0.08,0.5]
. dynamichmc_inference
has issues with the model and hence was excluded from this benchmark.
Appendix
These benchmarks are a part of the SciMLBenchmarks.jl repository, found at: https://github.com/SciML/SciMLBenchmarks.jl. For more information on high-performance scientific machine learning, check out the SciML Open Source Software Organization https://sciml.ai.
To locally run this benchmark, do the following commands:
using SciMLBenchmarks
SciMLBenchmarks.weave_file("benchmarks/BayesianInference","DiffEqBayesFitzHughNagumo.jmd")
Computer Information:
Julia Version 1.10.5
Commit 6f3fdf7b362 (2024-08-27 14:19 UTC)
Build Info:
Official https://julialang.org/ release
Platform Info:
OS: Linux (x86_64-linux-gnu)
CPU: 128 × AMD EPYC 7502 32-Core Processor
WORD_SIZE: 64
LIBM: libopenlibm
LLVM: libLLVM-15.0.7 (ORCJIT, znver2)
Threads: 1 default, 0 interactive, 1 GC (on 128 virtual cores)
Environment:
JULIA_CPU_THREADS = 128
JULIA_DEPOT_PATH = /cache/julia-buildkite-plugin/depots/5b300254-1738-4989-ae0a-f4d2d937f953
Package Information:
Status `/cache/build/exclusive-amdci3-0/julialang/scimlbenchmarks-dot-jl/benchmarks/BayesianInference/Project.toml`
⌃ [6e4b80f9] BenchmarkTools v1.3.2
⌃ [ebbdde9d] DiffEqBayes v3.6.0
⌅ [459566f4] DiffEqCallbacks v2.29.1
⌃ [31c24e10] Distributions v0.25.100
⌃ [bbc10e6e] DynamicHMC v3.4.6
⌃ [1dea7af3] OrdinaryDiffEq v6.55.0
⌃ [65888b18] ParameterizedFunctions v5.15.0
⌃ [91a5bcdd] Plots v1.39.0
⌅ [731186ca] RecursiveArrayTools v2.38.7
[31c91b34] SciMLBenchmarks v0.1.3
⌃ [c1514b29] StanSample v7.4.2
⌃ [90137ffa] StaticArrays v1.6.2
⌅ [fce5fe82] Turing v0.28.3
[37e2e46d] LinearAlgebra
Info Packages marked with ⌃ and ⌅ have new versions available. Those with ⌃ may be upgradable, but those with ⌅ are restricted by compatibility constraints from upgrading. To see why use `status --outdated`
Warning The project dependencies or compat requirements have changed since the manifest was last resolved. It is recommended to `Pkg.resolve()` or consider `Pkg.update()` if necessary.
And the full manifest:
Status `/cache/build/exclusive-amdci3-0/julialang/scimlbenchmarks-dot-jl/benchmarks/BayesianInference/Manifest.toml`
⌅ [47edcb42] ADTypes v0.2.1
[a4c015fc] ANSIColoredPrinters v0.0.1
⌅ [c3fe647b] AbstractAlgebra v0.31.1
[621f4979] AbstractFFTs v1.5.0
⌅ [80f14c24] AbstractMCMC v4.4.2
⌅ [7a57a42e] AbstractPPL v0.6.2
⌃ [1520ce14] AbstractTrees v0.4.4
⌅ [79e6a3ab] Adapt v3.6.2
⌅ [0bf59076] AdvancedHMC v0.5.4
⌅ [5b7e9947] AdvancedMH v0.7.5
⌅ [576499cb] AdvancedPS v0.4.3
⌃ [b5ca4192] AdvancedVI v0.2.4
[dce04be8] ArgCheck v2.3.0
⌅ [ec485272] ArnoldiMethod v0.2.0
⌃ [4fba245c] ArrayInterface v7.4.11
[30b0a656] ArrayInterfaceCore v0.1.29
[a9b6321e] Atomix v0.1.0
⌃ [13072b0f] AxisAlgorithms v1.0.1
[39de3d68] AxisArrays v0.4.7
⌅ [198e06fe] BangBang v0.3.39
[9718e550] Baselet v0.1.1
⌃ [6e4b80f9] BenchmarkTools v1.3.2
⌃ [e2ed5e7c] Bijections v0.1.4
⌃ [76274a88] Bijectors v0.13.6
⌃ [d1d4a3ce] BitFlags v0.1.7
⌃ [62783981] BitTwiddlingConvenienceFunctions v0.1.5
⌅ [fa961155] CEnum v0.4.2
⌃ [2a0fbf3d] CPUSummary v0.2.3
⌃ [00ebfdb7] CSTParser v3.3.6
⌃ [336ed68f] CSV v0.10.11
⌃ [49dc2e85] Calculus v0.5.1
⌃ [082447d4] ChainRules v1.53.0
⌃ [d360d2e6] ChainRulesCore v1.16.0
⌃ [9e997f8a] ChangesOfVariables v0.1.8
⌃ [fb6a15b2] CloseOpenIntervals v0.1.12
⌃ [944b1d66] CodecZlib v0.7.2
⌃ [35d6a980] ColorSchemes v3.23.0
⌅ [3da002f7] ColorTypes v0.11.4
[c3611d14] ColorVectorSpace v0.10.0
⌃ [5ae59095] Colors v0.12.10
[861a8166] Combinatorics v1.0.2
⌃ [a80b9123] CommonMark v0.8.12
[38540f10] CommonSolve v0.2.4
⌃ [bbf7d656] CommonSubexpressions v0.3.0
⌃ [34da2185] Compat v4.9.0
⌃ [5224ae11] CompatHelperLocal v0.1.25
⌃ [b152e2b5] CompositeTypes v0.1.3
[a33af91c] CompositionsBase v0.1.2
⌃ [f0e56b4a] ConcurrentUtilities v2.2.1
⌃ [8f4d0f93] Conda v1.9.1
[88cd18e8] ConsoleProgressMonitor v0.1.2
⌅ [187b0558] ConstructionBase v1.5.3
⌃ [d38c429a] Contour v0.6.2
[adafc99b] CpuId v0.3.1
[a8cc5b0e] Crayons v4.1.1
⌃ [9a962f9c] DataAPI v1.15.0
⌃ [a93c6f00] DataFrames v1.6.1
⌃ [864edb3b] DataStructures v0.18.15
[e2d170a0] DataValueInterfaces v1.0.0
[244e2a9f] DefineSingletons v0.1.2
[8bb1440f] DelimitedFiles v1.9.1
[b429d917] DensityInterface v0.4.0
⌃ [2b5f629d] DiffEqBase v6.128.2
⌃ [ebbdde9d] DiffEqBayes v3.6.0
⌅ [459566f4] DiffEqCallbacks v2.29.1
[163ba53b] DiffResults v1.1.0
[b552c78f] DiffRules v1.15.1
⌃ [b4f34e82] Distances v0.10.9
⌃ [31c24e10] Distributions v0.25.100
⌃ [ced4e74d] DistributionsAD v0.6.52
[ffbed154] DocStringExtensions v0.9.3
⌅ [e30172f5] Documenter v0.27.25
⌅ [5b8099bc] DomainSets v0.6.7
[fa6b7ba4] DualNumbers v0.6.8
⌃ [bbc10e6e] DynamicHMC v3.4.6
⌅ [366bfd00] DynamicPPL v0.23.14
⌅ [7c1d4256] DynamicPolynomials v0.5.2
⌅ [cad2338a] EllipticalSliceSampling v1.1.0
[4e289a0a] EnumX v1.0.4
⌃ [460bff9d] ExceptionUnwrapping v0.1.9
⌃ [d4d017d3] ExponentialUtilities v1.24.0
[e2ba6199] ExprTools v0.1.10
⌃ [c87230d0] FFMPEG v0.4.1
⌃ [7a1cc6ca] FFTW v1.7.1
⌅ [7034ab61] FastBroadcast v0.2.6
[9aa1b823] FastClosures v0.3.2
⌃ [29a986be] FastLapackInterface v2.0.0
⌃ [48062228] FilePathsBase v0.9.20
⌃ [1a297f60] FillArrays v1.6.1
⌃ [6a86dc24] FiniteDiff v2.21.1
⌃ [53c48c17] FixedPointNumbers v0.8.4
⌃ [59287772] Formatting v0.4.2
[f6369f11] ForwardDiff v0.10.36
[069b7b12] FunctionWrappers v1.1.3
[77dc65aa] FunctionWrappersWrappers v0.1.3
⌃ [d9f16b24] Functors v0.4.5
⌅ [46192b85] GPUArraysCore v0.1.5
⌅ [28b8d3ca] GR v0.72.9
⌃ [c145ed77] GenericSchur v0.5.3
⌃ [d7ba0133] Git v1.3.0
[c27321d9] Glob v1.3.1
⌃ [86223c79] Graphs v1.8.0
[42e2da0e] Grisu v1.0.2
⌅ [0b43b601] Groebner v0.4.2
⌅ [d5909c97] GroupsCore v0.4.0
⌃ [cd3eb016] HTTP v1.9.14
⌃ [eafb193a] Highlights v0.5.2
⌃ [3e5b6fbb] HostCPUFeatures v0.1.16
⌃ [34004b35] HypergeometricFunctions v0.3.23
⌃ [7073ff75] IJulia v1.24.2
⌃ [b5f81e59] IOCapture v0.2.3
[615f187c] IfElse v0.1.1
⌃ [d25df0c9] Inflate v0.1.3
[22cec73e] InitialValues v0.3.1
⌃ [842dd82b] InlineStrings v1.4.0
[505f98c9] InplaceOps v0.3.0
[18e54dd8] IntegerMathUtils v0.1.2
⌅ [a98d9a8b] Interpolations v0.14.7
⌃ [8197267c] IntervalSets v0.7.7
⌃ [3587e190] InverseFunctions v0.1.12
[41ab1584] InvertedIndices v1.3.0
[92d709cd] IrrationalConstants v0.2.2
⌃ [c8e1da08] IterTools v1.8.0
[82899510] IteratorInterfaceExtensions v1.0.0
⌃ [1019f520] JLFzf v0.1.5
⌃ [692b3bcd] JLLWrappers v1.5.0
[682c06a0] JSON v0.21.4
⌃ [98e50ef6] JuliaFormatter v1.0.35
⌃ [ccbc3e58] JumpProcesses v9.7.2
⌅ [ef3ab10e] KLU v0.4.0
⌃ [63c18a36] KernelAbstractions v0.9.8
⌃ [5ab0869b] KernelDensity v0.6.7
⌃ [ba0b0d4f] Krylov v0.9.3
⌅ [929cbde3] LLVM v6.1.0
⌃ [8ac3fa9e] LRUCache v1.4.1
⌃ [b964fa9f] LaTeXStrings v1.3.0
⌃ [2ee39098] LabelledArrays v1.14.0
⌅ [984bce1d] LambertW v0.4.6
⌅ [23fbe1c1] Latexify v0.15.21
⌃ [10f19ff3] LayoutPointers v0.1.14
[50d2b5c4] Lazy v0.15.1
⌃ [1fad7336] LazyStack v0.1.1
[1d6d02ad] LeftChildRightSiblingTrees v0.2.0
⌃ [6f1fad26] Libtask v0.8.6
⌃ [d3d80556] LineSearches v7.2.0
⌃ [7ed4a6bd] LinearSolve v2.5.1
⌃ [6fdf6af0] LogDensityProblems v2.1.1
⌃ [996a588d] LogDensityProblemsAD v1.5.0
⌃ [2ab3a3ac] LogExpFunctions v0.3.26
⌃ [e6f89c97] LoggingExtras v1.0.1
⌃ [bdcacae8] LoopVectorization v0.12.165
⌃ [c7f686f2] MCMCChains v6.0.3
⌃ [be115224] MCMCDiagnosticTools v0.3.5
⌃ [e80e1ace] MLJModelInterface v1.9.2
[d8e11817] MLStyle v0.4.17
⌃ [1914dd2f] MacroTools v0.5.11
[d125e4d3] ManualMemory v0.1.8
[dbb5928d] MappedArrays v0.4.2
⌃ [739be429] MbedTLS v1.1.7
[442fdcdd] Measures v0.3.2
⌅ [128add7d] MicroCollections v0.1.4
⌃ [e1d29d7a] Missings v1.1.0
⌅ [961ee093] ModelingToolkit v8.65.0
[46d2c3a1] MuladdMacro v0.2.4
⌃ [102ac46a] MultivariatePolynomials v0.5.1
⌃ [ffc61752] Mustache v1.0.17
⌃ [d8a4904e] MutableArithmetics v1.3.1
[d41bc354] NLSolversBase v7.8.3
[2774e3e8] NLsolve v4.5.1
⌃ [872c559c] NNlib v0.9.4
[77ba4419] NaNMath v1.0.2
⌃ [86f7a689] NamedArrays v0.10.0
[d9ec5142] NamedTupleTools v0.14.3
[c020b1a1] NaturalSort v1.0.0
⌅ [8913a72c] NonlinearSolve v1.10.0
⌃ [6fe1bfb0] OffsetArrays v1.12.10
⌃ [4d8831e6] OpenSSL v1.4.1
⌃ [429524aa] Optim v1.7.7
⌅ [3bd65402] Optimisers v0.2.20
⌃ [bac558e1] OrderedCollections v1.6.2
⌃ [1dea7af3] OrdinaryDiffEq v6.55.0
⌃ [90014a1f] PDMats v0.11.17
⌃ [65ce6f38] PackageExtensionCompat v1.0.1
⌃ [65888b18] ParameterizedFunctions v5.15.0
[d96e819e] Parameters v0.12.3
⌃ [69de0a69] Parsers v2.7.2
[b98c9c47] Pipe v1.3.0
⌃ [ccf2f8ad] PlotThemes v3.1.0
⌃ [995b91a9] PlotUtils v1.3.5
⌃ [91a5bcdd] Plots v1.39.0
[e409e4f3] PoissonRandom v0.4.4
⌃ [f517fe37] Polyester v0.7.5
⌃ [1d0040c9] PolyesterWeave v0.2.1
⌃ [2dfb63ee] PooledArrays v1.4.2
[85a6dd25] PositiveFactorizations v0.2.4
⌃ [d236fae5] PreallocationTools v0.4.12
⌃ [aea7be01] PrecompileTools v1.2.0
⌃ [21216c6a] Preferences v1.4.0
⌃ [08abe8d2] PrettyTables v2.2.7
⌃ [27ebfcd6] Primes v0.5.4
[33c8b6b6] ProgressLogging v0.1.4
⌃ [92933f4c] ProgressMeter v1.8.0
⌃ [1fd47b50] QuadGK v2.8.2
⌃ [74087812] Random123 v1.6.1
⌃ [fb686558] RandomExtensions v0.4.3
⌃ [e6cf234a] RandomNumbers v1.5.3
[b3c3ace0] RangeArrays v0.3.2
[c84ed2f1] Ratios v0.4.5
[c1ae055f] RealDot v0.1.0
[3cdcf5f2] RecipesBase v1.3.4
[01d81517] RecipesPipeline v0.6.12
⌅ [731186ca] RecursiveArrayTools v2.38.7
⌃ [f2c3362d] RecursiveFactorization v0.2.20
[189a3867] Reexport v1.2.2
⌃ [05181044] RelocatableFolders v1.0.0
[ae029012] Requires v1.3.0
⌅ [79098fc4] Rmath v0.7.1
⌃ [f2b01f46] Roots v2.0.19
⌃ [7e49a35a] RuntimeGeneratedFunctions v0.5.12
⌃ [fdea26ae] SIMD v3.4.5
[94e857df] SIMDTypes v0.1.0
⌃ [476501e8] SLEEFPirates v0.6.39
⌅ [0bca4576] SciMLBase v1.95.0
[31c91b34] SciMLBenchmarks v0.1.3
⌃ [e9a6253c] SciMLNLSolve v0.1.8
⌃ [c0aeaf25] SciMLOperators v0.3.6
[30f210dd] ScientificTypesBase v3.0.0
⌃ [6c6a2e73] Scratch v1.2.0
⌃ [91c51154] SentinelArrays v1.4.0
[efcf1570] Setfield v1.1.1
[992d4aef] Showoff v1.0.3
⌃ [777ac1f9] SimpleBufferStream v1.1.0
⌅ [727e6d20] SimpleNonlinearSolve v0.1.19
[699a6c99] SimpleTraits v0.9.4
[ce78b400] SimpleUnPack v1.1.0
[66db9d55] SnoopPrecompile v1.0.3
[b85f4697] SoftGlobalScope v1.1.0
⌃ [a2af1166] SortingAlgorithms v1.1.1
⌃ [47a9eef4] SparseDiffTools v2.5.0
[e56a9233] Sparspak v0.3.9
⌃ [276daf66] SpecialFunctions v2.3.1
[171d559e] SplittablesBase v0.1.15
⌃ [d0ee94f6] StanBase v4.8.1
⌃ [c1514b29] StanSample v7.4.2
⌅ [aedffcd0] Static v0.8.8
⌃ [0d7ed370] StaticArrayInterface v1.4.1
⌃ [90137ffa] StaticArrays v1.6.2
⌃ [1e83bf80] StaticArraysCore v1.4.2
⌃ [64bff920] StatisticalTraits v3.2.0
⌃ [82ae8749] StatsAPI v1.6.0
⌃ [2913bbd2] StatsBase v0.34.0
⌃ [4c63d2b9] StatsFuns v1.3.0
⌅ [7792a7ef] StrideArraysCore v0.4.17
⌅ [5e0ebb24] Strided v1.2.3
[69024149] StringEncodings v0.3.7
⌅ [892a3eda] StringManipulation v0.3.0
⌃ [09ab397b] StructArrays v0.6.15
⌅ [2efcf032] SymbolicIndexingInterface v0.2.2
⌅ [d1185830] SymbolicUtils v1.2.0
⌅ [0c5d862f] Symbolics v5.5.1
[ab02a1b2] TableOperations v1.2.0
[3783bdb8] TableTraits v1.0.1
⌃ [bd369af6] Tables v1.10.1
⌃ [02d47bb6] TensorCast v0.4.6
[62fd8b95] TensorCore v0.1.1
[5d786b92] TerminalLoggers v0.1.7
[8290d209] ThreadingUtilities v0.5.2
⌃ [a759f4b9] TimerOutputs v0.5.23
⌃ [0796e94c] Tokenize v0.5.25
⌃ [9f7883ad] Tracker v0.2.26
⌅ [3bb67fe8] TranscodingStreams v0.9.13
⌃ [28d57a85] Transducers v0.4.78
⌃ [84d833dd] TransformVariables v0.8.7
[f9bc47f6] TransformedLogDensities v1.0.3
⌃ [24ddb15e] TransmuteDims v0.1.15
[a2a6695c] TreeViews v0.3.0
⌅ [d5829a12] TriangularSolve v0.1.19
⌃ [410a4b4d] Tricks v0.1.7
[781d530d] TruncatedStacktraces v1.4.0
⌃ [9d95972d] TupleTools v1.3.0
⌅ [fce5fe82] Turing v0.28.3
⌃ [5c2747f8] URIs v1.5.0
[3a884ed6] UnPack v1.0.2
[1cfade01] UnicodeFun v0.4.1
⌃ [1986cc42] Unitful v1.17.0
⌃ [45397f5d] UnitfulLatexify v1.6.3
⌃ [a7c27f48] Unityper v0.1.5
[013be700] UnsafeAtomics v0.2.1
⌅ [d80eeb9a] UnsafeAtomicsLLVM v0.1.3
[41fe7b60] Unzip v0.2.0
⌃ [3d5dd08c] VectorizationBase v0.21.64
[81def892] VersionParsing v1.3.0
[19fa3120] VertexSafeGraphs v0.2.0
[ea10d353] WeakRefStrings v1.4.2
[44d3d7a6] Weave v0.10.12
⌅ [efce3f68] WoodburyMatrices v0.5.5
[76eceee3] WorkerUtilities v1.6.1
⌃ [ddb6d928] YAML v0.4.9
⌃ [c2297ded] ZMQ v1.2.2
⌃ [700de1a5] ZygoteRules v0.2.3
⌃ [6e34b625] Bzip2_jll v1.0.8+0
⌃ [83423d85] Cairo_jll v1.16.1+1
⌃ [2e619515] Expat_jll v2.5.0+0
⌅ [b22a6f82] FFMPEG_jll v4.4.2+2
⌃ [f5851436] FFTW_jll v3.3.10+0
⌃ [a3f928ae] Fontconfig_jll v2.13.93+0
⌃ [d7e528f0] FreeType2_jll v2.13.1+0
⌃ [559328eb] FriBidi_jll v1.0.10+0
⌃ [0656b61e] GLFW_jll v3.3.8+0
⌅ [d2c73de3] GR_jll v0.72.9+1
[78b55507] Gettext_jll v0.21.0+0
⌃ [f8c6e375] Git_jll v2.36.1+2
⌃ [7746bdde] Glib_jll v2.74.0+2
[3b182d85] Graphite2_jll v1.3.14+0
⌅ [2e76f6c2] HarfBuzz_jll v2.8.1+1
⌅ [1d5cc7b8] IntelOpenMP_jll v2023.2.0+0
⌃ [aacddb02] JpegTurbo_jll v2.1.91+0
⌃ [c1c5ebd0] LAME_jll v3.100.1+0
⌅ [88015f11] LERC_jll v3.0.0+1
⌅ [dad2f222] LLVMExtra_jll v0.0.23+0
⌃ [1d63c593] LLVMOpenMP_jll v15.0.4+0
⌃ [dd4b983a] LZO_jll v2.10.1+0
⌅ [e9f186c6] Libffi_jll v3.2.2+1
⌃ [d4300ac3] Libgcrypt_jll v1.8.7+0
[7e76a0d4] Libglvnd_jll v1.6.0+0
⌃ [7add5ba3] Libgpg_error_jll v1.42.0+0
⌃ [94ce4f54] Libiconv_jll v1.16.1+2
⌃ [4b2f31a3] Libmount_jll v2.35.0+0
⌅ [89763e89] Libtiff_jll v4.5.1+1
⌃ [38a345b3] Libuuid_jll v2.36.0+0
⌅ [856f044c] MKL_jll v2023.2.0+0
[e7412a2a] Ogg_jll v1.3.5+1
⌅ [458c3c95] OpenSSL_jll v1.1.22+0
[efe28fd5] OpenSpecFun_jll v0.5.5+0
⌃ [91d4177d] Opus_jll v1.3.2+0
⌃ [30392449] Pixman_jll v0.42.2+0
⌅ [c0090381] Qt6Base_jll v6.4.2+3
⌅ [f50d1b31] Rmath_jll v0.4.0+0
⌃ [a2964d1f] Wayland_jll v1.21.0+0
⌃ [2381bf8a] Wayland_protocols_jll v1.25.0+0
⌃ [02c8fc9c] XML2_jll v2.10.3+0
⌃ [aed1982a] XSLT_jll v1.1.34+0
⌃ [ffd25f8a] XZ_jll v5.4.4+0
[4f6342f7] Xorg_libX11_jll v1.8.6+0
[0c0b7dd1] Xorg_libXau_jll v1.0.11+0
[935fb764] Xorg_libXcursor_jll v1.2.0+4
[a3789734] Xorg_libXdmcp_jll v1.1.4+0
⌃ [1082639a] Xorg_libXext_jll v1.3.4+4
[d091e8ba] Xorg_libXfixes_jll v5.0.3+4
[a51aa0fd] Xorg_libXi_jll v1.7.10+4
[d1454406] Xorg_libXinerama_jll v1.1.4+4
[ec84b674] Xorg_libXrandr_jll v1.5.2+4
⌃ [ea2f1a96] Xorg_libXrender_jll v0.9.10+4
[14d82f49] Xorg_libpthread_stubs_jll v0.1.1+0
⌃ [c7cfdc94] Xorg_libxcb_jll v1.15.0+0
[cc61e674] Xorg_libxkbfile_jll v1.1.2+0
[12413925] Xorg_xcb_util_image_jll v0.4.0+1
[2def613f] Xorg_xcb_util_jll v0.4.0+1
[975044d2] Xorg_xcb_util_keysyms_jll v0.4.0+1
[0d47668e] Xorg_xcb_util_renderutil_jll v0.3.9+1
[c22f9ab0] Xorg_xcb_util_wm_jll v0.4.1+1
[35661453] Xorg_xkbcomp_jll v1.4.6+0
[33bec58e] Xorg_xkeyboard_config_jll v2.39.0+0
[c5fb5394] Xorg_xtrans_jll v1.5.0+0
⌃ [8f1865be] ZeroMQ_jll v4.3.4+0
⌃ [3161d3a3] Zstd_jll v1.5.5+0
⌅ [214eeab7] fzf_jll v0.29.0+0
⌃ [a4ae2306] libaom_jll v3.4.0+0
⌃ [0ac62f75] libass_jll v0.15.1+0
⌃ [f638f0a6] libfdk_aac_jll v2.0.2+0
⌃ [b53b4c65] libpng_jll v1.6.38+0
⌃ [a9144af2] libsodium_jll v1.0.20+0
⌃ [f27f6e37] libvorbis_jll v1.3.7+1
⌅ [1270edf5] x264_jll v2021.5.5+0
⌅ [dfaa095f] x265_jll v3.5.0+0
⌃ [d8fb68d0] xkbcommon_jll v1.4.1+0
[0dad84c5] ArgTools v1.1.1
[56f22d72] Artifacts
[2a0f44e3] Base64
[ade2ca70] Dates
[8ba89e20] Distributed
[f43a241f] Downloads v1.6.0
[7b1f6079] FileWatching
[9fa8497b] Future
[b77e0a4c] InteractiveUtils
[4af54fe1] LazyArtifacts
[b27032c2] LibCURL v0.6.3
[76f85450] LibGit2
[8f399da3] Libdl
[37e2e46d] LinearAlgebra
[56ddb016] Logging
[d6f4376e] Markdown
[a63ad114] Mmap
[ca575930] NetworkOptions v1.2.0
[44cfe95a] Pkg v1.9.0
[de0858da] Printf
[9abbd945] Profile
[3fa0cd96] REPL
[9a3f8284] Random
[ea8e919c] SHA v0.7.0
[9e88b42a] Serialization
[1a1011a3] SharedArrays
[6462fe0b] Sockets
[2f01184e] SparseArrays
[10745b16] Statistics v1.9.0
[4607b0f0] SuiteSparse
[fa267f1f] TOML v1.0.3
[a4e569a6] Tar v1.10.0
[8dfed614] Test
[cf7118a7] UUIDs
[4ec0a83e] Unicode
[e66e0078] CompilerSupportLibraries_jll v1.0.2+0
[deac9b47] LibCURL_jll v7.84.0+0
[29816b5a] LibSSH2_jll v1.10.2+0
[c8ffd9c3] MbedTLS_jll v2.28.2+0
[14a3606d] MozillaCACerts_jll v2022.10.11
[4536629a] OpenBLAS_jll v0.3.21+4
[05823500] OpenLibm_jll v0.8.1+0
[efcefdf7] PCRE2_jll v10.42.0+0
[bea87d4a] SuiteSparse_jll v5.10.1+6
[83775a58] Zlib_jll v1.2.13+0
[8e850b90] libblastrampoline_jll v5.8.0+0
[8e850ede] nghttp2_jll v1.48.0+0
[3f19e933] p7zip_jll v17.4.0+0
Info Packages marked with ⌃ and ⌅ have new versions available. Those with ⌃ may be upgradable, but those with ⌅ are restricted by compatibility constraints from upgrading. To see why use `status --outdated -m`
Warning The project dependencies or compat requirements have changed since the manifest was last resolved. It is recommended to `Pkg.resolve()` or consider `Pkg.update()` if necessary.