Lotka-Volterra Bayesian Parameter Estimation Benchmarks
Parameter Estimation of Lotka-Volterra Equation using DiffEqBayes.jl
using DiffEqBayes, StanSample, DynamicHMC, Turing
using Distributions, BenchmarkTools, StaticArrays
using OrdinaryDiffEq, RecursiveArrayTools, ParameterizedFunctions
using Plots, LinearAlgebra
gr(fmt=:png)
Plots.GRBackend()
Initializing the problem
f = @ode_def LotkaVolterraTest begin
dx = a*x - b*x*y
dy = -c*y + d*x*y
end a b c d
(::Main.var"##WeaveSandBox#225".LotkaVolterraTest{Main.var"##WeaveSandBox#2
25".var"###ParameterizedDiffEqFunction#227", Main.var"##WeaveSandBox#225".v
ar"###ParameterizedTGradFunction#228", Main.var"##WeaveSandBox#225".var"###
ParameterizedJacobianFunction#229", Nothing, Nothing, ModelingToolkit.ODESy
stem}) (generic function with 1 method)
u0 = [1.0,1.0]
tspan = (0.0,10.0)
p = [1.5,1.0,3.0,1,0]
5-element Vector{Float64}:
1.5
1.0
3.0
1.0
0.0
prob = ODEProblem(f, u0, tspan, p)
sol = solve(prob,Tsit5())
retcode: Success
Interpolation: specialized 4th order "free" interpolation
t: 34-element Vector{Float64}:
0.0
0.0776084743154256
0.23264513699277584
0.4291185174543143
0.6790821987497083
0.9444046158046306
1.2674601546021105
1.6192913303893046
1.9869754428624007
2.2640902393538296
⋮
7.584863345264154
7.978068981329682
8.48316543760351
8.719248247740158
8.949206788834692
9.200185054623292
9.438029017301554
9.711808134779586
10.0
u: 34-element Vector{Vector{Float64}}:
[1.0, 1.0]
[1.0454942346944578, 0.8576684823217128]
[1.1758715885138271, 0.6394595703175443]
[1.419680960717083, 0.4569962601282089]
[1.8767193950080012, 0.3247334292791134]
[2.588250064553348, 0.26336255535952197]
[3.860708909220769, 0.2794458098285261]
[5.750812667710401, 0.522007253793458]
[6.8149789991301635, 1.9177826328390826]
[4.392999292571394, 4.1946707928506015]
⋮
[2.6142539677883248, 0.26416945387526314]
[4.24107612719179, 0.3051236762922018]
[6.791123785297775, 1.1345287797146668]
[6.26537067576476, 2.741693507540315]
[3.780765111887945, 4.431165685863443]
[1.816420140681737, 4.064056625315896]
[1.1465021407690763, 2.791170661621642]
[0.9557986135403417, 1.623562295185047]
[1.0337581256020802, 0.9063703842885995]
su0 = SA[1.0,1.0]
sp = SA[1.5,1.0,3.0,1,0]
sprob = ODEProblem{false,SciMLBase.FullSpecialize}(f, su0, tspan, sp)
sol = solve(sprob,Tsit5())
retcode: Success
Interpolation: specialized 4th order "free" interpolation
t: 34-element Vector{Float64}:
0.0
0.0776084743154256
0.23264513699277584
0.4291185174543143
0.6790821987497083
0.9444046158046306
1.2674601546021105
1.6192913303893046
1.9869754428624007
2.2640902393538296
⋮
7.584863345264154
7.978068981329682
8.48316543760351
8.719248247740158
8.949206788834692
9.200185054623292
9.438029017301554
9.711808134779586
10.0
u: 34-element Vector{StaticArraysCore.SVector{2, Float64}}:
[1.0, 1.0]
[1.0454942346944578, 0.8576684823217128]
[1.1758715885138271, 0.6394595703175443]
[1.419680960717083, 0.4569962601282089]
[1.8767193950080012, 0.3247334292791134]
[2.588250064553348, 0.26336255535952197]
[3.860708909220769, 0.2794458098285261]
[5.750812667710401, 0.522007253793458]
[6.8149789991301635, 1.9177826328390826]
[4.392999292571394, 4.1946707928506015]
⋮
[2.6142539677883248, 0.26416945387526314]
[4.241076127191789, 0.30512367629220183]
[6.791123785297779, 1.1345287797146653]
[6.265370675764766, 2.7416935075403135]
[3.7807651118879293, 4.431165685863457]
[1.8164201406817235, 4.064056625315901]
[1.146502140769069, 2.791170661621637]
[0.9557986135403385, 1.6235622951850437]
[1.033758125602079, 0.9063703842885992]
We take the solution data obtained and add noise to it to obtain data for using in the Bayesian Inference of the parameters
t = collect(range(1,stop=10,length=10))
sig = 0.49
data = convert(Array, VectorOfArray([(sol(t[i]) + sig*randn(2)) for i in 1:length(t)]))
2×10 Matrix{Float64}:
1.99225 7.08929 0.9339 1.74927 … 3.84984 3.83629 -0.243501
0.938425 1.68661 2.36932 -0.379958 -0.587858 4.56227 1.08317
Plots of the actual data and generated data
scatter(t, data[1,:], lab="#prey (data)")
scatter!(t, data[2,:], lab="#predator (data)")
plot!(sol)
priors = [truncated(Normal(1.5,0.5),0.5,2.5),truncated(Normal(1.2,0.5),0,2),truncated(Normal(3.0,0.5),1,4),truncated(Normal(1.0,0.5),0,2)]
4-element Vector{Distributions.Truncated{Distributions.Normal{Float64}, Dis
tributions.Continuous, Float64, Float64, Float64}}:
Truncated(Distributions.Normal{Float64}(μ=1.5, σ=0.5); lower=0.5, upper=2.
5)
Truncated(Distributions.Normal{Float64}(μ=1.2, σ=0.5); lower=0.0, upper=2.
0)
Truncated(Distributions.Normal{Float64}(μ=3.0, σ=0.5); lower=1.0, upper=4.
0)
Truncated(Distributions.Normal{Float64}(μ=1.0, σ=0.5); lower=0.0, upper=2.
0)
Stan.jl backend
The solution converges for tolerance values lower than 1e-3, lower tolerance leads to better accuracy in result but is accompanied by longer warmup and sampling time, truncated normal priors are used for preventing Stan from stepping into negative values.
@btime bayesian_result_stan = stan_inference(prob,t,data,priors,num_samples=10_000,print_summary=false,delta = 0.65, vars = (DiffEqBayes.StanODEData(), InverseGamma(2, 3)))
33.050041 seconds (2.13 M allocations: 144.962 MiB, 1.42% gc time, 6.02% c
ompilation time)
32.300621 seconds (674 allocations: 56.625 KiB)
25.812665 seconds (674 allocations: 56.625 KiB)
25.728564 seconds (675 allocations: 56.922 KiB)
44.489 s (260872 allocations: 31.95 MiB)
Chains MCMC chain (10000×6×1 Array{Float64, 3}):
Iterations = 1:1:10000
Number of chains = 1
Samples per chain = 10000
parameters = sigma1.1, sigma1.2, theta_1, theta_2, theta_3, theta_4
internals =
Summary Statistics
parameters mean std mcse ess_bulk ess_tail rha
t ⋯
Symbol Float64 Float64 Float64 Float64 Float64 Float6
4 ⋯
sigma1.1 0.6944 0.1941 0.0032 3399.1221 2461.8497 1.000
0 ⋯
sigma1.2 0.6907 0.1918 0.0030 4399.8382 4427.5426 0.999
9 ⋯
theta_1 1.4586 0.0976 0.0020 2236.6745 2731.2775 1.000
1 ⋯
theta_2 1.0844 0.1470 0.0030 3100.7289 2530.3454 0.999
9 ⋯
theta_3 3.1423 0.3029 0.0064 2276.4138 2183.8754 1.000
1 ⋯
theta_4 1.0425 0.1117 0.0023 2389.9320 3215.6497 1.000
0 ⋯
1 column om
itted
Quantiles
parameters 2.5% 25.0% 50.0% 75.0% 97.5%
Symbol Float64 Float64 Float64 Float64 Float64
sigma1.1 0.4245 0.5589 0.6582 0.7888 1.1747
sigma1.2 0.4237 0.5577 0.6561 0.7857 1.1592
theta_1 1.2889 1.3933 1.4502 1.5142 1.6740
theta_2 0.8559 0.9847 1.0645 1.1627 1.4328
theta_3 2.5622 2.9424 3.1344 3.3378 3.7734
theta_4 0.8365 0.9681 1.0369 1.1141 1.2765
Direct Turing.jl
@model function fitlv(data, prob)
# Prior distributions.
σ ~ InverseGamma(2, 3)
α ~ truncated(Normal(1.5, 0.5), 0.5, 2.5)
β ~ truncated(Normal(1.2, 0.5), 0, 2)
γ ~ truncated(Normal(3.0, 0.5), 1, 4)
δ ~ truncated(Normal(1.0, 0.5), 0, 2)
# Simulate Lotka-Volterra model.
p = SA[α, β, γ, δ]
_prob = remake(prob, p = p)
predicted = solve(_prob, Tsit5(); saveat=t)
# Observations.
for i in 1:length(predicted)
data[:, i] ~ MvNormal(predicted[i], σ^2 * I)
end
return nothing
end
model = fitlv(data, sprob)
@time chain = sample(model, Turing.NUTS(0.65), 10000; progress=false)
49.943596 seconds (137.55 M allocations: 22.088 GiB, 5.86% gc time, 43.16%
compilation time)
Chains MCMC chain (10000×17×1 Array{Float64, 3}):
Iterations = 1001:1:11000
Number of chains = 1
Samples per chain = 10000
Wall duration = 41.98 seconds
Compute duration = 41.98 seconds
parameters = σ, α, β, γ, δ
internals = lp, n_steps, is_accept, acceptance_rate, log_density, h
amiltonian_energy, hamiltonian_energy_error, max_hamiltonian_energy_error,
tree_depth, numerical_error, step_size, nom_step_size
Summary Statistics
parameters mean std mcse ess_bulk ess_tail rha
t ⋯
Symbol Float64 Float64 Float64 Float64 Float64 Float6
4 ⋯
σ 0.6073 0.1162 0.0019 4040.9844 4621.6486 1.000
1 ⋯
α 1.4569 0.0921 0.0020 2026.0851 2226.7652 1.001
0 ⋯
β 1.0741 0.1299 0.0024 3367.5230 3055.1646 1.000
3 ⋯
γ 3.1412 0.2897 0.0064 2077.0964 2320.5783 1.001
6 ⋯
δ 1.0410 0.1039 0.0023 2101.5446 2475.1650 1.001
5 ⋯
1 column om
itted
Quantiles
parameters 2.5% 25.0% 50.0% 75.0% 97.5%
Symbol Float64 Float64 Float64 Float64 Float64
σ 0.4295 0.5259 0.5922 0.6697 0.8752
α 1.2967 1.3929 1.4503 1.5128 1.6581
β 0.8679 0.9865 1.0576 1.1440 1.3873
γ 2.5934 2.9421 3.1278 3.3319 3.7324
δ 0.8438 0.9705 1.0383 1.1095 1.2560
Turing.jl backend
@btime bayesian_result_turing = turing_inference(prob, Tsit5(), t, data, priors, num_samples=10_000)
20.243 s (102038729 allocations: 16.44 GiB)
Chains MCMC chain (10000×17×1 Array{Float64, 3}):
Iterations = 1001:1:11000
Number of chains = 1
Samples per chain = 10000
Wall duration = 20.16 seconds
Compute duration = 20.16 seconds
parameters = theta[1], theta[2], theta[3], theta[4], σ[1]
internals = lp, n_steps, is_accept, acceptance_rate, log_density, h
amiltonian_energy, hamiltonian_energy_error, max_hamiltonian_energy_error,
tree_depth, numerical_error, step_size, nom_step_size
Summary Statistics
parameters mean std mcse ess_bulk ess_tail rha
t ⋯
Symbol Float64 Float64 Float64 Float64 Float64 Float6
4 ⋯
theta[1] 1.4578 0.0930 0.0021 1930.2613 2900.8278 1.000
0 ⋯
theta[2] 1.0732 0.1263 0.0028 2443.8108 2570.1407 1.000
0 ⋯
theta[3] 3.1380 0.2904 0.0062 2214.6105 2916.5340 1.000
3 ⋯
theta[4] 1.0400 0.1044 0.0023 2108.5399 3146.7209 1.000
0 ⋯
σ[1] 0.6036 0.1132 0.0021 2726.6675 2993.5162 1.002
4 ⋯
1 column om
itted
Quantiles
parameters 2.5% 25.0% 50.0% 75.0% 97.5%
Symbol Float64 Float64 Float64 Float64 Float64
theta[1] 1.2987 1.3935 1.4509 1.5124 1.6687
theta[2] 0.8701 0.9873 1.0577 1.1426 1.3622
theta[3] 2.5795 2.9445 3.1306 3.3297 3.7277
theta[4] 0.8382 0.9717 1.0364 1.1072 1.2524
σ[1] 0.4308 0.5221 0.5879 0.6664 0.8737
DynamicHMC.jl backend
@btime bayesian_result_dynamichmc = dynamichmc_inference(prob,Tsit5(),t,data,priors,num_samples=10_000)
27.361 s (233104229 allocations: 17.01 GiB)
(posterior = @NamedTuple{parameters::Vector{Float64}, σ::Vector{Float64}}[(
parameters = [1.4952787760166542, 0.9795402970255677, 2.9476869823156955, 0
.966927522105304], σ = [0.6367975083763966, 0.5615486428956382]), (paramete
rs = [1.3566398999249143, 1.0536723482907244, 3.5629638838881332, 1.1705831
239609186], σ = [0.6861837909213727, 0.47630448627452154]), (parameters = [
1.511893343588603, 0.9770951810936597, 2.9455923014167644, 0.99478592998037
66], σ = [0.6532440814569386, 0.414580196407776]), (parameters = [1.4401379
739014994, 1.1248037701589886, 3.1695560723488105, 1.0298906938645045], σ =
[0.41689794887511006, 0.5130958923493837]), (parameters = [1.4571804227889
873, 1.1964366834362319, 3.2718781506532513, 1.0062183839968675], σ = [0.57
98441557634343, 0.4498198712896204]), (parameters = [1.3997012245700473, 1.
0759423127064194, 3.355121019701527, 1.0850146236311433], σ = [0.4934294851
394983, 0.46005616949407035]), (parameters = [1.4048750214729608, 0.9913981
056188329, 3.322681495068753, 1.0820882304534323], σ = [0.6095718739702543,
0.49050750486062267]), (parameters = [1.3979592820536173, 0.99810908398219
36, 3.3411701027838414, 1.0931726390336778], σ = [0.6102166288651508, 0.495
88816287734266]), (parameters = [1.4802360319385002, 1.0383783739498296, 3.
0199708751129672, 1.0035915139654212], σ = [0.38770597390933154, 0.44335732
1986018]), (parameters = [1.4856525899054631, 1.0326569747654, 2.9742899735
760413, 1.0055419999237747], σ = [0.36074749931646516, 0.42690559535482375]
) … (parameters = [1.333915233324529, 1.0654903579955377, 3.7241477554555
207, 1.167152066855398], σ = [0.7269589771775857, 0.5650651470716619]), (pa
rameters = [1.4305532736453381, 0.9968962854349178, 3.1038455141597523, 1.0
6890198788187], σ = [0.43643033884725585, 0.4422576703960259]), (parameters
= [1.4277568144051505, 1.0596186331566653, 3.224615985573098, 1.0433044913
549459], σ = [0.44333921616184224, 0.45042300171539607]), (parameters = [1.
566707833571088, 1.068351807654099, 2.7463514699751927, 0.9187607940417547]
, σ = [0.5020529305881937, 0.537792529976105]), (parameters = [1.5585826348
044354, 1.2273186683285995, 2.82950664018062, 0.9374276830881155], σ = [0.4
842653248446857, 0.5803440740699037]), (parameters = [1.4943686999158974, 1
.0064611357490014, 2.924185770595777, 0.9788123605953497], σ = [0.712934755
398517, 0.4865827360542992]), (parameters = [1.30627111467881, 1.0087647332
269427, 3.6218712490809173, 1.1929947285057547], σ = [0.4420236118506816, 0
.6448950570840983]), (parameters = [1.4284179039152083, 1.024477456008023,
3.183550993982444, 1.0631724302656136], σ = [0.8053138167546255, 0.41157171
94466109]), (parameters = [1.435221117079158, 1.0436777819340681, 3.1806754
595214723, 1.0672144093703546], σ = [0.7913043826236178, 0.4142254610581592
7]), (parameters = [1.5088950276559596, 1.0406641232919223, 2.9747348867805
39, 0.9636783551927511], σ = [0.4198076856685422, 0.49928136909878856])], p
osterior_matrix = [0.40231266171080304 0.30501098080668365 … 0.361318925898
0667 0.4113776131883844; -0.020671902039938315 0.052281536791318056 … 0.042
750803827751246 0.03985908943616285; … ; -0.4513035571851263 -0.37660977034
454335 … -0.23407257787149943 -0.8679585638343164; -0.577056878287546 -0.74
1697952209558 … -0.8813448614652692 -0.6945854762138415], tree_statistics =
DynamicHMC.TreeStatisticsNUTS[DynamicHMC.TreeStatisticsNUTS(-22.3716327588
17107, 5, turning at positions 42:57, 0.9901458448801421, 63, DynamicHMC.Di
rections(0x5c545af9)), DynamicHMC.TreeStatisticsNUTS(-25.93300321496061, 6,
turning at positions -19:44, 0.9544061834679402, 63, DynamicHMC.Directions
(0x2dc7ce2c)), DynamicHMC.TreeStatisticsNUTS(-24.555202453387864, 5, turnin
g at positions 4:35, 0.9866727684750237, 63, DynamicHMC.Directions(0x817ab5
23)), DynamicHMC.TreeStatisticsNUTS(-23.884970669958662, 6, turning at posi
tions -29:34, 0.9587120515542572, 63, DynamicHMC.Directions(0xbd207362)), D
ynamicHMC.TreeStatisticsNUTS(-24.7132207802753, 5, turning at positions -9:
22, 0.9606865969827195, 31, DynamicHMC.Directions(0x1a072f96)), DynamicHMC.
TreeStatisticsNUTS(-26.242648205808102, 5, turning at positions -14:-45, 0.
9994033791092954, 63, DynamicHMC.Directions(0x77b4a952)), DynamicHMC.TreeSt
atisticsNUTS(-21.19732285437598, 5, turning at positions -8:23, 0.982758497
3542746, 31, DynamicHMC.Directions(0x7a9f3ff7)), DynamicHMC.TreeStatisticsN
UTS(-21.61933622455548, 3, turning at positions -6:1, 0.8791506842743703, 7
, DynamicHMC.Directions(0xc2cd19e1)), DynamicHMC.TreeStatisticsNUTS(-20.394
181261868738, 6, turning at positions -6:57, 0.9998293766539543, 63, Dynami
cHMC.Directions(0xeb2b1cb9)), DynamicHMC.TreeStatisticsNUTS(-21.26774159906
5396, 4, turning at positions -6:9, 0.9284776714404738, 15, DynamicHMC.Dire
ctions(0xd7d39639)) … DynamicHMC.TreeStatisticsNUTS(-24.12367784936122, 5
, turning at positions -22:9, 0.9922834660624564, 31, DynamicHMC.Directions
(0x23bf0a29)), DynamicHMC.TreeStatisticsNUTS(-23.953061378355297, 6, turnin
g at positions -5:58, 0.9894591579783205, 63, DynamicHMC.Directions(0x9ec98
47a)), DynamicHMC.TreeStatisticsNUTS(-20.78418527751442, 4, turning at posi
tions -4:11, 0.9980792211556438, 15, DynamicHMC.Directions(0xdf23551b)), Dy
namicHMC.TreeStatisticsNUTS(-22.33144271357113, 6, turning at positions -18
:45, 0.9369750713863976, 63, DynamicHMC.Directions(0xc0a0a42d)), DynamicHMC
.TreeStatisticsNUTS(-21.251476359898383, 5, turning at positions -23:8, 0.9
904613967158185, 31, DynamicHMC.Directions(0xd8656d88)), DynamicHMC.TreeSta
tisticsNUTS(-22.524269027805516, 5, turning at positions -4:-35, 0.91137435
77183251, 63, DynamicHMC.Directions(0x22a82b5c)), DynamicHMC.TreeStatistics
NUTS(-25.049026099101894, 6, turning at positions -40:-103, 0.9017450111231
021, 127, DynamicHMC.Directions(0xc9080e98)), DynamicHMC.TreeStatisticsNUTS
(-25.501536758349733, 6, turning at positions -57:6, 0.9955105216497803, 63
, DynamicHMC.Directions(0x7da57386)), DynamicHMC.TreeStatisticsNUTS(-21.356
932726721176, 5, turning at positions -14:17, 0.9916521252960447, 31, Dynam
icHMC.Directions(0x7c91ca51)), DynamicHMC.TreeStatisticsNUTS(-21.6731677139
08843, 6, turning at positions -39:24, 0.9999389610896954, 63, DynamicHMC.D
irections(0xf3e036d8))], κ = Gaussian kinetic energy (Diagonal), √diag(M⁻¹)
: [0.07131351740604645, 0.1334176945471142, 0.10321891745411786, 0.11240097
887935113, 0.2903183045121105, 0.267766249298579], ϵ = 0.06305738285550684)
Conclusion
Lotka-Volterra Equation is a "predator-prey" model, it models population of two species in which one is the predator (wolf) and the other is the prey (rabbit). It depicts a cyclic behaviour, which is also seen in its Uncertainty Quantification Plots. This behaviour makes it easy to estimate even at very high tolerance values (1e-3).
Appendix
These benchmarks are a part of the SciMLBenchmarks.jl repository, found at: https://github.com/SciML/SciMLBenchmarks.jl. For more information on high-performance scientific machine learning, check out the SciML Open Source Software Organization https://sciml.ai.
To locally run this benchmark, do the following commands:
using SciMLBenchmarks
SciMLBenchmarks.weave_file("benchmarks/BayesianInference","DiffEqBayesLotkaVolterra.jmd")
Computer Information:
Julia Version 1.10.5
Commit 6f3fdf7b362 (2024-08-27 14:19 UTC)
Build Info:
Official https://julialang.org/ release
Platform Info:
OS: Linux (x86_64-linux-gnu)
CPU: 128 × AMD EPYC 7502 32-Core Processor
WORD_SIZE: 64
LIBM: libopenlibm
LLVM: libLLVM-15.0.7 (ORCJIT, znver2)
Threads: 1 default, 0 interactive, 1 GC (on 128 virtual cores)
Environment:
JULIA_CPU_THREADS = 128
JULIA_DEPOT_PATH = /cache/julia-buildkite-plugin/depots/5b300254-1738-4989-ae0a-f4d2d937f953
Package Information:
Status `/cache/build/exclusive-amdci3-0/julialang/scimlbenchmarks-dot-jl/benchmarks/BayesianInference/Project.toml`
⌃ [6e4b80f9] BenchmarkTools v1.3.2
⌃ [ebbdde9d] DiffEqBayes v3.6.0
⌅ [459566f4] DiffEqCallbacks v2.29.1
⌃ [31c24e10] Distributions v0.25.100
⌃ [bbc10e6e] DynamicHMC v3.4.6
⌃ [1dea7af3] OrdinaryDiffEq v6.55.0
⌃ [65888b18] ParameterizedFunctions v5.15.0
⌃ [91a5bcdd] Plots v1.39.0
⌅ [731186ca] RecursiveArrayTools v2.38.7
[31c91b34] SciMLBenchmarks v0.1.3
⌃ [c1514b29] StanSample v7.4.2
⌃ [90137ffa] StaticArrays v1.6.2
⌅ [fce5fe82] Turing v0.28.3
[37e2e46d] LinearAlgebra
Info Packages marked with ⌃ and ⌅ have new versions available. Those with ⌃ may be upgradable, but those with ⌅ are restricted by compatibility constraints from upgrading. To see why use `status --outdated`
Warning The project dependencies or compat requirements have changed since the manifest was last resolved. It is recommended to `Pkg.resolve()` or consider `Pkg.update()` if necessary.
And the full manifest:
Status `/cache/build/exclusive-amdci3-0/julialang/scimlbenchmarks-dot-jl/benchmarks/BayesianInference/Manifest.toml`
⌅ [47edcb42] ADTypes v0.2.1
[a4c015fc] ANSIColoredPrinters v0.0.1
⌅ [c3fe647b] AbstractAlgebra v0.31.1
[621f4979] AbstractFFTs v1.5.0
⌅ [80f14c24] AbstractMCMC v4.4.2
⌅ [7a57a42e] AbstractPPL v0.6.2
⌃ [1520ce14] AbstractTrees v0.4.4
⌅ [79e6a3ab] Adapt v3.6.2
⌅ [0bf59076] AdvancedHMC v0.5.4
⌅ [5b7e9947] AdvancedMH v0.7.5
⌅ [576499cb] AdvancedPS v0.4.3
⌃ [b5ca4192] AdvancedVI v0.2.4
[dce04be8] ArgCheck v2.3.0
⌅ [ec485272] ArnoldiMethod v0.2.0
⌃ [4fba245c] ArrayInterface v7.4.11
[30b0a656] ArrayInterfaceCore v0.1.29
[a9b6321e] Atomix v0.1.0
⌃ [13072b0f] AxisAlgorithms v1.0.1
[39de3d68] AxisArrays v0.4.7
⌅ [198e06fe] BangBang v0.3.39
[9718e550] Baselet v0.1.1
⌃ [6e4b80f9] BenchmarkTools v1.3.2
⌃ [e2ed5e7c] Bijections v0.1.4
⌃ [76274a88] Bijectors v0.13.6
⌃ [d1d4a3ce] BitFlags v0.1.7
⌃ [62783981] BitTwiddlingConvenienceFunctions v0.1.5
⌅ [fa961155] CEnum v0.4.2
⌃ [2a0fbf3d] CPUSummary v0.2.3
⌃ [00ebfdb7] CSTParser v3.3.6
⌃ [336ed68f] CSV v0.10.11
⌃ [49dc2e85] Calculus v0.5.1
⌃ [082447d4] ChainRules v1.53.0
⌃ [d360d2e6] ChainRulesCore v1.16.0
⌃ [9e997f8a] ChangesOfVariables v0.1.8
⌃ [fb6a15b2] CloseOpenIntervals v0.1.12
⌃ [944b1d66] CodecZlib v0.7.2
⌃ [35d6a980] ColorSchemes v3.23.0
⌅ [3da002f7] ColorTypes v0.11.4
[c3611d14] ColorVectorSpace v0.10.0
⌃ [5ae59095] Colors v0.12.10
[861a8166] Combinatorics v1.0.2
⌃ [a80b9123] CommonMark v0.8.12
[38540f10] CommonSolve v0.2.4
⌃ [bbf7d656] CommonSubexpressions v0.3.0
⌃ [34da2185] Compat v4.9.0
⌃ [5224ae11] CompatHelperLocal v0.1.25
⌃ [b152e2b5] CompositeTypes v0.1.3
[a33af91c] CompositionsBase v0.1.2
⌃ [f0e56b4a] ConcurrentUtilities v2.2.1
⌃ [8f4d0f93] Conda v1.9.1
[88cd18e8] ConsoleProgressMonitor v0.1.2
⌅ [187b0558] ConstructionBase v1.5.3
⌃ [d38c429a] Contour v0.6.2
[adafc99b] CpuId v0.3.1
[a8cc5b0e] Crayons v4.1.1
⌃ [9a962f9c] DataAPI v1.15.0
⌃ [a93c6f00] DataFrames v1.6.1
⌃ [864edb3b] DataStructures v0.18.15
[e2d170a0] DataValueInterfaces v1.0.0
[244e2a9f] DefineSingletons v0.1.2
[8bb1440f] DelimitedFiles v1.9.1
[b429d917] DensityInterface v0.4.0
⌃ [2b5f629d] DiffEqBase v6.128.2
⌃ [ebbdde9d] DiffEqBayes v3.6.0
⌅ [459566f4] DiffEqCallbacks v2.29.1
[163ba53b] DiffResults v1.1.0
[b552c78f] DiffRules v1.15.1
⌃ [b4f34e82] Distances v0.10.9
⌃ [31c24e10] Distributions v0.25.100
⌃ [ced4e74d] DistributionsAD v0.6.52
[ffbed154] DocStringExtensions v0.9.3
⌅ [e30172f5] Documenter v0.27.25
⌅ [5b8099bc] DomainSets v0.6.7
[fa6b7ba4] DualNumbers v0.6.8
⌃ [bbc10e6e] DynamicHMC v3.4.6
⌅ [366bfd00] DynamicPPL v0.23.14
⌅ [7c1d4256] DynamicPolynomials v0.5.2
⌅ [cad2338a] EllipticalSliceSampling v1.1.0
[4e289a0a] EnumX v1.0.4
⌃ [460bff9d] ExceptionUnwrapping v0.1.9
⌃ [d4d017d3] ExponentialUtilities v1.24.0
[e2ba6199] ExprTools v0.1.10
⌃ [c87230d0] FFMPEG v0.4.1
⌃ [7a1cc6ca] FFTW v1.7.1
⌅ [7034ab61] FastBroadcast v0.2.6
[9aa1b823] FastClosures v0.3.2
⌃ [29a986be] FastLapackInterface v2.0.0
⌃ [48062228] FilePathsBase v0.9.20
⌃ [1a297f60] FillArrays v1.6.1
⌃ [6a86dc24] FiniteDiff v2.21.1
⌃ [53c48c17] FixedPointNumbers v0.8.4
⌃ [59287772] Formatting v0.4.2
[f6369f11] ForwardDiff v0.10.36
[069b7b12] FunctionWrappers v1.1.3
[77dc65aa] FunctionWrappersWrappers v0.1.3
⌃ [d9f16b24] Functors v0.4.5
⌅ [46192b85] GPUArraysCore v0.1.5
⌅ [28b8d3ca] GR v0.72.9
⌃ [c145ed77] GenericSchur v0.5.3
⌃ [d7ba0133] Git v1.3.0
[c27321d9] Glob v1.3.1
⌃ [86223c79] Graphs v1.8.0
[42e2da0e] Grisu v1.0.2
⌅ [0b43b601] Groebner v0.4.2
⌅ [d5909c97] GroupsCore v0.4.0
⌃ [cd3eb016] HTTP v1.9.14
⌃ [eafb193a] Highlights v0.5.2
⌃ [3e5b6fbb] HostCPUFeatures v0.1.16
⌃ [34004b35] HypergeometricFunctions v0.3.23
⌃ [7073ff75] IJulia v1.24.2
⌃ [b5f81e59] IOCapture v0.2.3
[615f187c] IfElse v0.1.1
⌃ [d25df0c9] Inflate v0.1.3
[22cec73e] InitialValues v0.3.1
⌃ [842dd82b] InlineStrings v1.4.0
[505f98c9] InplaceOps v0.3.0
[18e54dd8] IntegerMathUtils v0.1.2
⌅ [a98d9a8b] Interpolations v0.14.7
⌃ [8197267c] IntervalSets v0.7.7
⌃ [3587e190] InverseFunctions v0.1.12
[41ab1584] InvertedIndices v1.3.0
[92d709cd] IrrationalConstants v0.2.2
⌃ [c8e1da08] IterTools v1.8.0
[82899510] IteratorInterfaceExtensions v1.0.0
⌃ [1019f520] JLFzf v0.1.5
⌃ [692b3bcd] JLLWrappers v1.5.0
[682c06a0] JSON v0.21.4
⌃ [98e50ef6] JuliaFormatter v1.0.35
⌃ [ccbc3e58] JumpProcesses v9.7.2
⌅ [ef3ab10e] KLU v0.4.0
⌃ [63c18a36] KernelAbstractions v0.9.8
⌃ [5ab0869b] KernelDensity v0.6.7
⌃ [ba0b0d4f] Krylov v0.9.3
⌅ [929cbde3] LLVM v6.1.0
⌃ [8ac3fa9e] LRUCache v1.4.1
⌃ [b964fa9f] LaTeXStrings v1.3.0
⌃ [2ee39098] LabelledArrays v1.14.0
⌅ [984bce1d] LambertW v0.4.6
⌅ [23fbe1c1] Latexify v0.15.21
⌃ [10f19ff3] LayoutPointers v0.1.14
[50d2b5c4] Lazy v0.15.1
⌃ [1fad7336] LazyStack v0.1.1
[1d6d02ad] LeftChildRightSiblingTrees v0.2.0
⌃ [6f1fad26] Libtask v0.8.6
⌃ [d3d80556] LineSearches v7.2.0
⌃ [7ed4a6bd] LinearSolve v2.5.1
⌃ [6fdf6af0] LogDensityProblems v2.1.1
⌃ [996a588d] LogDensityProblemsAD v1.5.0
⌃ [2ab3a3ac] LogExpFunctions v0.3.26
⌃ [e6f89c97] LoggingExtras v1.0.1
⌃ [bdcacae8] LoopVectorization v0.12.165
⌃ [c7f686f2] MCMCChains v6.0.3
⌃ [be115224] MCMCDiagnosticTools v0.3.5
⌃ [e80e1ace] MLJModelInterface v1.9.2
[d8e11817] MLStyle v0.4.17
⌃ [1914dd2f] MacroTools v0.5.11
[d125e4d3] ManualMemory v0.1.8
[dbb5928d] MappedArrays v0.4.2
⌃ [739be429] MbedTLS v1.1.7
[442fdcdd] Measures v0.3.2
⌅ [128add7d] MicroCollections v0.1.4
⌃ [e1d29d7a] Missings v1.1.0
⌅ [961ee093] ModelingToolkit v8.65.0
[46d2c3a1] MuladdMacro v0.2.4
⌃ [102ac46a] MultivariatePolynomials v0.5.1
⌃ [ffc61752] Mustache v1.0.17
⌃ [d8a4904e] MutableArithmetics v1.3.1
[d41bc354] NLSolversBase v7.8.3
[2774e3e8] NLsolve v4.5.1
⌃ [872c559c] NNlib v0.9.4
[77ba4419] NaNMath v1.0.2
⌃ [86f7a689] NamedArrays v0.10.0
[d9ec5142] NamedTupleTools v0.14.3
[c020b1a1] NaturalSort v1.0.0
⌅ [8913a72c] NonlinearSolve v1.10.0
⌃ [6fe1bfb0] OffsetArrays v1.12.10
⌃ [4d8831e6] OpenSSL v1.4.1
⌃ [429524aa] Optim v1.7.7
⌅ [3bd65402] Optimisers v0.2.20
⌃ [bac558e1] OrderedCollections v1.6.2
⌃ [1dea7af3] OrdinaryDiffEq v6.55.0
⌃ [90014a1f] PDMats v0.11.17
⌃ [65ce6f38] PackageExtensionCompat v1.0.1
⌃ [65888b18] ParameterizedFunctions v5.15.0
[d96e819e] Parameters v0.12.3
⌃ [69de0a69] Parsers v2.7.2
[b98c9c47] Pipe v1.3.0
⌃ [ccf2f8ad] PlotThemes v3.1.0
⌃ [995b91a9] PlotUtils v1.3.5
⌃ [91a5bcdd] Plots v1.39.0
[e409e4f3] PoissonRandom v0.4.4
⌃ [f517fe37] Polyester v0.7.5
⌃ [1d0040c9] PolyesterWeave v0.2.1
⌃ [2dfb63ee] PooledArrays v1.4.2
[85a6dd25] PositiveFactorizations v0.2.4
⌃ [d236fae5] PreallocationTools v0.4.12
⌃ [aea7be01] PrecompileTools v1.2.0
⌃ [21216c6a] Preferences v1.4.0
⌃ [08abe8d2] PrettyTables v2.2.7
⌃ [27ebfcd6] Primes v0.5.4
[33c8b6b6] ProgressLogging v0.1.4
⌃ [92933f4c] ProgressMeter v1.8.0
⌃ [1fd47b50] QuadGK v2.8.2
⌃ [74087812] Random123 v1.6.1
⌃ [fb686558] RandomExtensions v0.4.3
⌃ [e6cf234a] RandomNumbers v1.5.3
[b3c3ace0] RangeArrays v0.3.2
[c84ed2f1] Ratios v0.4.5
[c1ae055f] RealDot v0.1.0
[3cdcf5f2] RecipesBase v1.3.4
[01d81517] RecipesPipeline v0.6.12
⌅ [731186ca] RecursiveArrayTools v2.38.7
⌃ [f2c3362d] RecursiveFactorization v0.2.20
[189a3867] Reexport v1.2.2
⌃ [05181044] RelocatableFolders v1.0.0
[ae029012] Requires v1.3.0
⌅ [79098fc4] Rmath v0.7.1
⌃ [f2b01f46] Roots v2.0.19
⌃ [7e49a35a] RuntimeGeneratedFunctions v0.5.12
⌃ [fdea26ae] SIMD v3.4.5
[94e857df] SIMDTypes v0.1.0
⌃ [476501e8] SLEEFPirates v0.6.39
⌅ [0bca4576] SciMLBase v1.95.0
[31c91b34] SciMLBenchmarks v0.1.3
⌃ [e9a6253c] SciMLNLSolve v0.1.8
⌃ [c0aeaf25] SciMLOperators v0.3.6
[30f210dd] ScientificTypesBase v3.0.0
⌃ [6c6a2e73] Scratch v1.2.0
⌃ [91c51154] SentinelArrays v1.4.0
[efcf1570] Setfield v1.1.1
[992d4aef] Showoff v1.0.3
⌃ [777ac1f9] SimpleBufferStream v1.1.0
⌅ [727e6d20] SimpleNonlinearSolve v0.1.19
[699a6c99] SimpleTraits v0.9.4
[ce78b400] SimpleUnPack v1.1.0
[66db9d55] SnoopPrecompile v1.0.3
[b85f4697] SoftGlobalScope v1.1.0
⌃ [a2af1166] SortingAlgorithms v1.1.1
⌃ [47a9eef4] SparseDiffTools v2.5.0
[e56a9233] Sparspak v0.3.9
⌃ [276daf66] SpecialFunctions v2.3.1
[171d559e] SplittablesBase v0.1.15
⌃ [d0ee94f6] StanBase v4.8.1
⌃ [c1514b29] StanSample v7.4.2
⌅ [aedffcd0] Static v0.8.8
⌃ [0d7ed370] StaticArrayInterface v1.4.1
⌃ [90137ffa] StaticArrays v1.6.2
⌃ [1e83bf80] StaticArraysCore v1.4.2
⌃ [64bff920] StatisticalTraits v3.2.0
⌃ [82ae8749] StatsAPI v1.6.0
⌃ [2913bbd2] StatsBase v0.34.0
⌃ [4c63d2b9] StatsFuns v1.3.0
⌅ [7792a7ef] StrideArraysCore v0.4.17
⌅ [5e0ebb24] Strided v1.2.3
[69024149] StringEncodings v0.3.7
⌅ [892a3eda] StringManipulation v0.3.0
⌃ [09ab397b] StructArrays v0.6.15
⌅ [2efcf032] SymbolicIndexingInterface v0.2.2
⌅ [d1185830] SymbolicUtils v1.2.0
⌅ [0c5d862f] Symbolics v5.5.1
[ab02a1b2] TableOperations v1.2.0
[3783bdb8] TableTraits v1.0.1
⌃ [bd369af6] Tables v1.10.1
⌃ [02d47bb6] TensorCast v0.4.6
[62fd8b95] TensorCore v0.1.1
[5d786b92] TerminalLoggers v0.1.7
[8290d209] ThreadingUtilities v0.5.2
⌃ [a759f4b9] TimerOutputs v0.5.23
⌃ [0796e94c] Tokenize v0.5.25
⌃ [9f7883ad] Tracker v0.2.26
⌅ [3bb67fe8] TranscodingStreams v0.9.13
⌃ [28d57a85] Transducers v0.4.78
⌃ [84d833dd] TransformVariables v0.8.7
[f9bc47f6] TransformedLogDensities v1.0.3
⌃ [24ddb15e] TransmuteDims v0.1.15
[a2a6695c] TreeViews v0.3.0
⌅ [d5829a12] TriangularSolve v0.1.19
⌃ [410a4b4d] Tricks v0.1.7
[781d530d] TruncatedStacktraces v1.4.0
⌃ [9d95972d] TupleTools v1.3.0
⌅ [fce5fe82] Turing v0.28.3
⌃ [5c2747f8] URIs v1.5.0
[3a884ed6] UnPack v1.0.2
[1cfade01] UnicodeFun v0.4.1
⌃ [1986cc42] Unitful v1.17.0
⌃ [45397f5d] UnitfulLatexify v1.6.3
⌃ [a7c27f48] Unityper v0.1.5
[013be700] UnsafeAtomics v0.2.1
⌅ [d80eeb9a] UnsafeAtomicsLLVM v0.1.3
[41fe7b60] Unzip v0.2.0
⌃ [3d5dd08c] VectorizationBase v0.21.64
[81def892] VersionParsing v1.3.0
[19fa3120] VertexSafeGraphs v0.2.0
[ea10d353] WeakRefStrings v1.4.2
[44d3d7a6] Weave v0.10.12
⌅ [efce3f68] WoodburyMatrices v0.5.5
[76eceee3] WorkerUtilities v1.6.1
⌃ [ddb6d928] YAML v0.4.9
⌃ [c2297ded] ZMQ v1.2.2
⌃ [700de1a5] ZygoteRules v0.2.3
⌃ [6e34b625] Bzip2_jll v1.0.8+0
⌃ [83423d85] Cairo_jll v1.16.1+1
⌃ [2e619515] Expat_jll v2.5.0+0
⌅ [b22a6f82] FFMPEG_jll v4.4.2+2
⌃ [f5851436] FFTW_jll v3.3.10+0
⌃ [a3f928ae] Fontconfig_jll v2.13.93+0
⌃ [d7e528f0] FreeType2_jll v2.13.1+0
⌃ [559328eb] FriBidi_jll v1.0.10+0
⌃ [0656b61e] GLFW_jll v3.3.8+0
⌅ [d2c73de3] GR_jll v0.72.9+1
[78b55507] Gettext_jll v0.21.0+0
⌃ [f8c6e375] Git_jll v2.36.1+2
⌃ [7746bdde] Glib_jll v2.74.0+2
[3b182d85] Graphite2_jll v1.3.14+0
⌅ [2e76f6c2] HarfBuzz_jll v2.8.1+1
⌅ [1d5cc7b8] IntelOpenMP_jll v2023.2.0+0
⌃ [aacddb02] JpegTurbo_jll v2.1.91+0
⌃ [c1c5ebd0] LAME_jll v3.100.1+0
⌅ [88015f11] LERC_jll v3.0.0+1
⌅ [dad2f222] LLVMExtra_jll v0.0.23+0
⌃ [1d63c593] LLVMOpenMP_jll v15.0.4+0
⌃ [dd4b983a] LZO_jll v2.10.1+0
⌅ [e9f186c6] Libffi_jll v3.2.2+1
⌃ [d4300ac3] Libgcrypt_jll v1.8.7+0
[7e76a0d4] Libglvnd_jll v1.6.0+0
⌃ [7add5ba3] Libgpg_error_jll v1.42.0+0
⌃ [94ce4f54] Libiconv_jll v1.16.1+2
⌃ [4b2f31a3] Libmount_jll v2.35.0+0
⌅ [89763e89] Libtiff_jll v4.5.1+1
⌃ [38a345b3] Libuuid_jll v2.36.0+0
⌅ [856f044c] MKL_jll v2023.2.0+0
[e7412a2a] Ogg_jll v1.3.5+1
⌅ [458c3c95] OpenSSL_jll v1.1.22+0
[efe28fd5] OpenSpecFun_jll v0.5.5+0
⌃ [91d4177d] Opus_jll v1.3.2+0
⌃ [30392449] Pixman_jll v0.42.2+0
⌅ [c0090381] Qt6Base_jll v6.4.2+3
⌅ [f50d1b31] Rmath_jll v0.4.0+0
⌃ [a2964d1f] Wayland_jll v1.21.0+0
⌃ [2381bf8a] Wayland_protocols_jll v1.25.0+0
⌃ [02c8fc9c] XML2_jll v2.10.3+0
⌃ [aed1982a] XSLT_jll v1.1.34+0
⌃ [ffd25f8a] XZ_jll v5.4.4+0
[4f6342f7] Xorg_libX11_jll v1.8.6+0
[0c0b7dd1] Xorg_libXau_jll v1.0.11+0
[935fb764] Xorg_libXcursor_jll v1.2.0+4
[a3789734] Xorg_libXdmcp_jll v1.1.4+0
⌃ [1082639a] Xorg_libXext_jll v1.3.4+4
[d091e8ba] Xorg_libXfixes_jll v5.0.3+4
[a51aa0fd] Xorg_libXi_jll v1.7.10+4
[d1454406] Xorg_libXinerama_jll v1.1.4+4
[ec84b674] Xorg_libXrandr_jll v1.5.2+4
⌃ [ea2f1a96] Xorg_libXrender_jll v0.9.10+4
[14d82f49] Xorg_libpthread_stubs_jll v0.1.1+0
⌃ [c7cfdc94] Xorg_libxcb_jll v1.15.0+0
[cc61e674] Xorg_libxkbfile_jll v1.1.2+0
[12413925] Xorg_xcb_util_image_jll v0.4.0+1
[2def613f] Xorg_xcb_util_jll v0.4.0+1
[975044d2] Xorg_xcb_util_keysyms_jll v0.4.0+1
[0d47668e] Xorg_xcb_util_renderutil_jll v0.3.9+1
[c22f9ab0] Xorg_xcb_util_wm_jll v0.4.1+1
[35661453] Xorg_xkbcomp_jll v1.4.6+0
[33bec58e] Xorg_xkeyboard_config_jll v2.39.0+0
[c5fb5394] Xorg_xtrans_jll v1.5.0+0
⌃ [8f1865be] ZeroMQ_jll v4.3.4+0
⌃ [3161d3a3] Zstd_jll v1.5.5+0
⌅ [214eeab7] fzf_jll v0.29.0+0
⌃ [a4ae2306] libaom_jll v3.4.0+0
⌃ [0ac62f75] libass_jll v0.15.1+0
⌃ [f638f0a6] libfdk_aac_jll v2.0.2+0
⌃ [b53b4c65] libpng_jll v1.6.38+0
⌃ [a9144af2] libsodium_jll v1.0.20+0
⌃ [f27f6e37] libvorbis_jll v1.3.7+1
⌅ [1270edf5] x264_jll v2021.5.5+0
⌅ [dfaa095f] x265_jll v3.5.0+0
⌃ [d8fb68d0] xkbcommon_jll v1.4.1+0
[0dad84c5] ArgTools v1.1.1
[56f22d72] Artifacts
[2a0f44e3] Base64
[ade2ca70] Dates
[8ba89e20] Distributed
[f43a241f] Downloads v1.6.0
[7b1f6079] FileWatching
[9fa8497b] Future
[b77e0a4c] InteractiveUtils
[4af54fe1] LazyArtifacts
[b27032c2] LibCURL v0.6.3
[76f85450] LibGit2
[8f399da3] Libdl
[37e2e46d] LinearAlgebra
[56ddb016] Logging
[d6f4376e] Markdown
[a63ad114] Mmap
[ca575930] NetworkOptions v1.2.0
[44cfe95a] Pkg v1.9.0
[de0858da] Printf
[9abbd945] Profile
[3fa0cd96] REPL
[9a3f8284] Random
[ea8e919c] SHA v0.7.0
[9e88b42a] Serialization
[1a1011a3] SharedArrays
[6462fe0b] Sockets
[2f01184e] SparseArrays
[10745b16] Statistics v1.9.0
[4607b0f0] SuiteSparse
[fa267f1f] TOML v1.0.3
[a4e569a6] Tar v1.10.0
[8dfed614] Test
[cf7118a7] UUIDs
[4ec0a83e] Unicode
[e66e0078] CompilerSupportLibraries_jll v1.0.2+0
[deac9b47] LibCURL_jll v7.84.0+0
[29816b5a] LibSSH2_jll v1.10.2+0
[c8ffd9c3] MbedTLS_jll v2.28.2+0
[14a3606d] MozillaCACerts_jll v2022.10.11
[4536629a] OpenBLAS_jll v0.3.21+4
[05823500] OpenLibm_jll v0.8.1+0
[efcefdf7] PCRE2_jll v10.42.0+0
[bea87d4a] SuiteSparse_jll v5.10.1+6
[83775a58] Zlib_jll v1.2.13+0
[8e850b90] libblastrampoline_jll v5.8.0+0
[8e850ede] nghttp2_jll v1.48.0+0
[3f19e933] p7zip_jll v17.4.0+0
Info Packages marked with ⌃ and ⌅ have new versions available. Those with ⌃ may be upgradable, but those with ⌅ are restricted by compatibility constraints from upgrading. To see why use `status --outdated -m`
Warning The project dependencies or compat requirements have changed since the manifest was last resolved. It is recommended to `Pkg.resolve()` or consider `Pkg.update()` if necessary.