Lorenz Parameter Estimation Benchmarks

Estimate the parameters of the Lorenz system from the dataset

Note: If data is generated with a fixed time step method and then is tested against with the same time step, there is a biased introduced since it's no longer about hitting the true solution, rather it's just about retrieving the same values that the ODE was first generated by! Thus this version uses adaptive timestepping for all portions so that way tests are against the true solution.

using ParameterizedFunctions, OrdinaryDiffEq, DiffEqParamEstim, Optimization
using OptimizationBBO, OptimizationNLopt, Plots, ForwardDiff, BenchmarkTools
using ModelingToolkit: t_nounits as t, D_nounits as D
gr(fmt=:png)
Plots.GRBackend()
Xiang2015Bounds = Tuple{Float64, Float64}[(9, 11), (20, 30), (2, 3)] # for local optimizations
xlow_bounds = [9.0,20.0,2.0]
xhigh_bounds = [11.0,30.0,3.0]
LooserBounds = Tuple{Float64, Float64}[(0, 22), (0, 60), (0, 6)] # for global optimization
GloIniPar = [0.0, 0.5, 0.1] # for global optimizations
LocIniPar = [9.0, 20.0, 2.0] # for local optimization
3-element Vector{Float64}:
  9.0
 20.0
  2.0
@mtkmodel LorenzExample begin
  @parameters begin
      σ = 10.0  # Parameter: Prandtl number
      ρ = 28.0  # Parameter: Rayleigh number
      β = 8/3   # Parameter: Geometric factor
  end
  @variables begin
      x(t) = 1.0  # Initial condition for x
      y(t) = 1.0  # Initial condition for y
      z(t) = 1.0  # Initial condition for z
  end
  @equations begin
      D(x) ~ σ * (y - x)
      D(y) ~ x * (ρ - z) - y
      D(z) ~ x * y - β * z
  end
end
  
@mtkbuild g1 = LorenzExample()
p = [10.0,28.0,2.66] # Parameters used to construct the dataset
r0 = [1.0; 0.0; 0.0]                #[-11.8,-5.1,37.5] PODES Initial values of the system in space # [0.1, 0.0, 0.0]
tspan = (0.0, 30.0)                 # PODES sample of 3000 observations over the (0,30) timespan
prob = ODEProblem(g1, r0, tspan,p)
tspan2 = (0.0, 3.0)                 # Xiang test sample of 300 observations with a timestep of 0.01
prob_short = ODEProblem(g1, r0, tspan2,p)
ODEProblem with uType Vector{Float64} and tType Float64. In-place: true
timespan: (0.0, 3.0)
u0: 3-element Vector{Float64}:
 1.0
 0.0
 0.0
dt = 30.0/3000
tf = 30.0
tinterval = 0:dt:tf
time_points  = collect(tinterval)
3001-element Vector{Float64}:
  0.0
  0.01
  0.02
  0.03
  0.04
  0.05
  0.06
  0.07
  0.08
  0.09
  ⋮
 29.92
 29.93
 29.94
 29.95
 29.96
 29.97
 29.98
 29.99
 30.0
h = 0.01
M = 300
tstart = 0.0
tstop = tstart + M * h
tinterval_short = 0:h:tstop
t_short = collect(tinterval_short)
301-element Vector{Float64}:
 0.0
 0.01
 0.02
 0.03
 0.04
 0.05
 0.06
 0.07
 0.08
 0.09
 ⋮
 2.92
 2.93
 2.94
 2.95
 2.96
 2.97
 2.98
 2.99
 3.0
# Generate Data
data_sol_short = solve(prob_short,Vern9(),saveat=t_short,reltol=1e-9,abstol=1e-9)
data_short = convert(Array, data_sol_short) # This operation produces column major dataset obs as columns, equations as rows
data_sol = solve(prob,Vern9(),saveat=time_points,reltol=1e-9,abstol=1e-9)
data = convert(Array, data_sol)
3×3001 Matrix{Float64}:
 1.0  0.975053     0.953295    …  15.8745  15.8745  15.8745  15.8745
 0.0  0.0982298    0.193153       15.8745  15.8745  15.8745  15.8745
 0.0  0.000443091  0.00157839      9.0      9.0      9.0      9.0

Plot the data

plot(data_sol_short,vars=(1,2,3)) # the short solution
plot(data_sol,vars=(1,2,3)) # the longer solution
interpolation_sol = solve(prob,Vern7(),saveat=t,reltol=1e-12,abstol=1e-12)
plot(interpolation_sol,vars=(1,2,3))
Error: TypeError: non-boolean (Symbolics.Num) used in boolean context
A symbolic expression appeared in a Boolean context. This error arises in s
ituations where Julia expects a Bool, like 
if boolean_condition		 use ifelse(boolean_condition, then branch, else bran
ch)
x && y				 use x & y
boolean_condition ? a : b	 use ifelse(boolean_condition, a, b)
but a symbolic expression appeared instead of a Bool. For help regarding co
ntrol flow with symbolic variables, see https://docs.sciml.ai/ModelingToolk
it/dev/basics/FAQ/#How-do-I-handle-if-statements-in-my-symbolic-forms?
xyzt = plot(data_sol_short, plotdensity=10000,lw=1.5)
xy = plot(data_sol_short, plotdensity=10000, vars=(1,2))
xz = plot(data_sol_short, plotdensity=10000, vars=(1,3))
yz = plot(data_sol_short, plotdensity=10000, vars=(2,3))
xyz = plot(data_sol_short, plotdensity=10000, vars=(1,2,3))
plot(plot(xyzt,xyz),plot(xy, xz, yz, layout=(1,3),w=1), layout=(2,1), size=(800,600))

xyzt = plot(data_sol, plotdensity=10000,lw=1.5)
xy = plot(data_sol, plotdensity=10000, vars=(1,2))
xz = plot(data_sol, plotdensity=10000, vars=(1,3))
yz = plot(data_sol, plotdensity=10000, vars=(2,3))
xyz = plot(data_sol, plotdensity=10000, vars=(1,2,3))
plot(plot(xyzt,xyz),plot(xy, xz, yz, layout=(1,3),w=1), layout=(2,1), size=(800,600))

Find a local solution for the three parameters from a short data set

obj_short = build_loss_objective(prob_short,Tsit5(),L2Loss(t_short,data_short),tstops=t_short)
optprob = OptimizationProblem(obj_short, LocIniPar, lb = xlow_bounds, ub = xhigh_bounds)
@btime res1 = solve(optprob, BBO_adaptive_de_rand_1_bin(), maxiters = 7e3)
# Tolernace is still too high to get close enough
1.238 s (2615087 allocations: 365.53 MiB)
retcode: MaxIters
u: 3-element Vector{Float64}:
 10.000000011896784
 27.999999679098426
  2.6600000866654425
obj_short = build_loss_objective(prob_short,Tsit5(),L2Loss(t_short,data_short),tstops=t_short,reltol=1e-9)
optprob = OptimizationProblem(obj_short, LocIniPar, lb = xlow_bounds, ub = xhigh_bounds)
@btime res1 = solve(optprob, BBO_adaptive_de_rand_1_bin(), maxiters = 7e3)
# With the tolerance lower, it achieves the correct solution in 3.5 seconds.
1.247 s (2616258 allocations: 365.68 MiB)
retcode: MaxIters
u: 3-element Vector{Float64}:
 10.000000314276468
 28.000000010244495
  2.6599997639634707
obj_short = build_loss_objective(prob_short,Vern9(),L2Loss(t_short,data_short),tstops=t_short,reltol=1e-9,abstol=1e-9)
optprob = OptimizationProblem(obj_short, LocIniPar, lb = xlow_bounds, ub = xhigh_bounds)
@btime res1 = solve(optprob, BBO_adaptive_de_rand_1_bin(), maxiters = 7e3)
# With the more accurate solver Vern9 in the solution of the ODE, the convergence is less efficient!

# Fastest BlackBoxOptim: 3.5 seconds
1.764 s (2654650 allocations: 370.31 MiB)
retcode: MaxIters
u: 3-element Vector{Float64}:
  9.999999820179724
 28.00000025496668
  2.660000008997058

Using NLopt

First, the global optimization algorithms

obj_short = build_loss_objective(prob_short,Vern9(),L2Loss(t_short,data_short),Optimization.AutoForwardDiff(),tstops=t_short,reltol=1e-9,abstol=1e-9)
(::SciMLBase.OptimizationFunction{true, ADTypes.AutoForwardDiff{nothing, No
thing}, DiffEqParamEstim.var"#29#30"{Nothing, typeof(DiffEqParamEstim.STAND
ARD_PROB_GENERATOR), Base.Pairs{Symbol, Any, Tuple{Symbol, Symbol, Symbol},
 @NamedTuple{tstops::Vector{Float64}, reltol::Float64, abstol::Float64}}, S
ciMLBase.ODEProblem{Vector{Float64}, Tuple{Float64, Float64}, true, Modelin
gToolkit.MTKParameters{Vector{Float64}, Tuple{}, Tuple{}, Tuple{}, Tuple{}}
, SciMLBase.ODEFunction{true, SciMLBase.AutoSpecialize, ModelingToolkit.var
"#f#1091"{RuntimeGeneratedFunctions.RuntimeGeneratedFunction{(:ˍ₋arg1, :ˍ₋a
rg2, :t), ModelingToolkit.var"#_RGF_ModTag", ModelingToolkit.var"#_RGF_ModT
ag", (0x9164ddac, 0x43cdc5b3, 0x75d31def, 0x444336ac, 0xda70202a), Nothing}
, RuntimeGeneratedFunctions.RuntimeGeneratedFunction{(:ˍ₋out, :ˍ₋arg1, :ˍ₋a
rg2, :t), ModelingToolkit.var"#_RGF_ModTag", ModelingToolkit.var"#_RGF_ModT
ag", (0x745b5079, 0x1445a295, 0xac2e3b8d, 0x50c01577, 0xcec704b8), Nothing}
}, LinearAlgebra.UniformScaling{Bool}, Nothing, Nothing, Nothing, Nothing, 
Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, ModelingTool
kit.ObservedFunctionCache{ModelingToolkit.ODESystem}, Nothing, ModelingTool
kit.ODESystem, Nothing, Nothing}, Base.Pairs{Symbol, Union{}, Tuple{}, @Nam
edTuple{}}, SciMLBase.StandardODEProblem}, OrdinaryDiffEqVerner.Vern9{typeo
f(OrdinaryDiffEqCore.trivial_limiter!), typeof(OrdinaryDiffEqCore.trivial_l
imiter!), Static.False}, DiffEqParamEstim.L2Loss{Vector{Float64}, Matrix{Fl
oat64}, Nothing, Nothing, Nothing}, Nothing, Tuple{}}, Nothing, Nothing, No
thing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothi
ng, Nothing, Nothing, typeof(SciMLBase.DEFAULT_OBSERVED_NO_TIME), Nothing, 
Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Not
hing}) (generic function with 1 method)
opt = Opt(:GN_ORIG_DIRECT_L, 3)
optprob = OptimizationProblem(obj_short, GloIniPar, lb = first.(LooserBounds), ub = last.(LooserBounds))
@btime res1 = solve(optprob, opt, maxiters = 10000, xtol_rel = 1e-12)
2.163 s (3242524 allocations: 445.93 MiB)
retcode: Failure
u: 3-element Vector{Float64}:
 10.000000000079076
 27.999999999605798
  2.659999999934638
opt = Opt(:GN_CRS2_LM, 3)
@btime res1 = solve(optprob, opt, maxiters = 10000, xtol_rel = 1e-12)
823.223 ms (1245212 allocations: 171.24 MiB)
retcode: Failure
u: 3-element Vector{Float64}:
 10.000000000010058
 27.99999999994318
  2.659999999993697
opt = Opt(:GN_ISRES, 3)
@btime res1 = solve(optprob, opt, maxiters = 10000, xtol_rel = 1e-12) # Accurate to single precision 8.2 seconds
2.501 s (3760136 allocations: 517.13 MiB)
retcode: MaxIters
u: 3-element Vector{Float64}:
 10.000399733229292
 27.99861294666916
  2.65960429735005
opt = Opt(:GN_ESCH, 3)
@btime res1 = solve(optprob, opt, maxiters = 10000, xtol_rel = 1e-12) # Approximately accurate, good starting values for local optimization
2.494 s (3760136 allocations: 517.13 MiB)
retcode: MaxIters
u: 3-element Vector{Float64}:
  9.453461888135255
 30.033644594261425
  3.115883435403752

Next, the local optimization algorithms that could be used after the global algorithms as a check on the solution and its precision. All the local optimizers are started from LocIniPar and with the narrow bounds of the Xiang2015Paper.

opt = Opt(:LN_BOBYQA, 3)
optprob = OptimizationProblem(obj_short, LocIniPar, lb = xlow_bounds, ub = xhigh_bounds)
@btime res1 = solve(optprob, opt, maxiters = 10000, xtol_rel = 1e-12)
21.466 ms (32988 allocations: 4.52 MiB)
retcode: Failure
u: 3-element Vector{Float64}:
 10.000000000000089
 27.99999999999836
  2.6600000000010318
opt = Opt(:LN_NELDERMEAD, 3)
@btime res1 = solve(optprob, opt, maxiters = 10000, xtol_rel = 1e-12)
69.677 ms (107436 allocations: 14.76 MiB)
retcode: Failure
u: 3-element Vector{Float64}:
  9.999999999999293
 28.000000000006864
  2.660000000001213
opt = Opt(:LD_SLSQP, 3)
@btime res1 = solve(optprob, opt, maxiters = 10000, xtol_rel = 1e-12)
10.925 ms (15083 allocations: 2.53 MiB)
retcode: Failure
u: 3-element Vector{Float64}:
 10.000000000000107
 27.999999999998312
  2.6600000000010358
opt = Opt(:LN_COBYLA, 3)
@btime res1 = solve(optprob, opt, maxiters = 10000, xtol_rel = 1e-12)
130.683 ms (201060 allocations: 27.63 MiB)
retcode: Failure
u: 3-element Vector{Float64}:
  9.999999999998614
 28.00000000000312
  2.660000000002369
opt = Opt(:LN_NEWUOA_BOUND, 3)
@btime res1 = solve(optprob, opt, maxiters = 10000, xtol_rel = 1e-12)
57.033 ms (56168 allocations: 7.71 MiB)
retcode: Success
u: 3-element Vector{Float64}:
 10.000004314773646
 27.999981806974528
  2.6599957890239403
opt = Opt(:LN_PRAXIS, 3)
@btime res1 = solve(optprob, opt, maxiters = 10000, xtol_rel = 1e-12)
17.348 ms (32722 allocations: 4.69 MiB)
retcode: Failure
u: 3-element Vector{Float64}:
 10.000000000000073
 27.99999999999839
  2.660000000001071
opt = Opt(:LN_SBPLX, 3)
@btime res1 = solve(optprob, opt, maxiters = 10000, xtol_rel = 1e-12)
247.086 ms (379652 allocations: 52.20 MiB)
retcode: Failure
u: 3-element Vector{Float64}:
 10.000000000017945
 27.99999999991421
  2.65999999998792
opt = Opt(:LD_MMA, 3)
@btime res1 = solve(optprob, opt, maxiters = 10000, xtol_rel = 1e-12)
93.129 ms (126118 allocations: 21.77 MiB)
retcode: Failure
u: 3-element Vector{Float64}:
  9.999999999980686
 28.000000000097163
  2.6600000000171913
opt = Opt(:LD_LBFGS, 3)
@btime res1 = solve(optprob, opt, maxiters = 10000, xtol_rel = 1e-12)
13.090 ms (17881 allocations: 3.08 MiB)
retcode: Success
u: 3-element Vector{Float64}:
 10.000000000000492
 27.99999999999682
  2.6600000000007737
opt = Opt(:LD_TNEWTON_PRECOND_RESTART, 3)
@btime res1 = solve(optprob, opt, maxiters = 10000, xtol_rel = 1e-12)
14.772 ms (20317 allocations: 3.48 MiB)
retcode: Success
u: 3-element Vector{Float64}:
 10.000000000000087
 27.99999999999839
  2.6600000000010335

Now let's solve the longer version for a global solution

Notice from the plotting above that this ODE problem is chaotic and tends to diverge over time. In the longer version of parameter estimation, the dataset is increased to 3000 observations per variable with the same integration time step of 0.01. Vern9 solver with reltol=1e-9 and abstol=1e-9 has been established to be accurate on the time interval [0,50]

# BB with Vern9 converges very slowly. The final values are within the NarrowBounds.
obj = build_loss_objective(prob,Vern9(),L2Loss(time_points,data),tstops=time_points,reltol=1e-9,abstol=1e-9)
optprob = OptimizationProblem(obj, GloIniPar, lb = first.(LooserBounds), ub = last.(LooserBounds))
@btime res1 = solve(optprob, BBO_adaptive_de_rand_1_bin(); maxiters = 4e3) # Default adaptive_de_rand_1_bin_radiuslimited 33 sec [10.2183, 24.6711, 2.28969]
#@btime res1 = bboptimize(obj;SearchRange = LooserBounds, Method = :adaptive_de_rand_1_bin, MaxSteps = 4e3) # Method 32 sec [13.2222, 25.8589, 2.56176]
#@btime res1 = bboptimize(obj;SearchRange = LooserBounds, Method = :dxnes, MaxSteps = 2e3) # Method dxnes 119 sec  [16.8648, 24.393, 2.29119]
#@btime res1 = bboptimize(obj;SearchRange = LooserBounds, Method = :xnes, MaxSteps = 2e3) # Method xnes 304 sec  [19.1647, 24.9479, 2.39467]
#@btime res1 = bboptimize(obj;SearchRange = LooserBounds, Method = :de_rand_1_bin_radiuslimited, MaxSteps = 2e3) # Method 44 sec  [13.805, 24.6054, 2.37274]
#@btime res1 = bboptimize(obj;SearchRange = LooserBounds, Method = :generating_set_search, MaxSteps = 2e3) # Method 195 sec [19.1847, 24.9492, 2.39412]
10.302 s (12676751 allocations: 1.65 GiB)
retcode: MaxIters
u: 3-element Vector{Float64}:
  9.999866005438932
 28.000240000068334
  2.659811261200796
# using Evolutionary
# N = 3
# @time result, fitness, cnt = cmaes(obj, N; μ = 3, λ = 12, iterations = 1000) # cmaes( rastrigin, N; μ = 15, λ = P, tol = 1e-8)
opt = Opt(:GN_ORIG_DIRECT_L, 3)
@btime res1 = solve(optprob, opt, maxiters = 10000, xtol_rel = 1e-12)
16.299 s (19943270 allocations: 2.59 GiB)
retcode: Failure
u: 3-element Vector{Float64}:
 10.000000041311779
 27.999999814143607
  2.6599999567875927
opt = Opt(:GN_CRS2_LM, 3)
@btime res1 = solve(optprob, opt, maxiters = 20000, xtol_rel = 1e-12) # Hit and miss. converge approximately accurate values for local opt.91 seconds
8.762 s (10758710 allocations: 1.40 GiB)
retcode: Failure
u: 3-element Vector{Float64}:
  9.99999999998017
 28.000000000056435
  2.6600000000158017
opt = Opt(:GN_ISRES, 3)
@btime res1 = solve(optprob, opt, maxiters = 50000, xtol_rel = 1e-12) # Approximately accurate within local bounds
81.254 s (100054062 allocations: 13.01 GiB)
retcode: Failure
u: 3-element Vector{Float64}:
  9.99999999997841
 28.00000000008834
  2.6600000000042194
opt = Opt(:GN_ESCH, 3)
@btime res1 = solve(optprob, opt, maxiters = 20000, xtol_rel = 1e-12) # Approximately accurate
49.981 s (61600130 allocations: 8.01 GiB)
retcode: MaxIters
u: 3-element Vector{Float64}:
 10.087612118071565
 28.015446277215144
  2.419258521905909

This parameter estimation on the longer sample proves to be extremely challenging for the global optimizers. BlackBoxOptim is best in optimizing the objective function. All of the global algorithms produces final parameter estimates that could be used as starting values for further refinement with the local optimization algorithms.

opt = Opt(:LN_BOBYQA, 3)
optprob = OptimizationProblem(obj_short, LocIniPar, lb = xlow_bounds, ub = xhigh_bounds)
@btime res1 = solve(optprob, opt, maxiters = 10000, xtol_rel = 1e-12) # Claims SUCCESS but does not iterate to the true values.
21.470 ms (32988 allocations: 4.52 MiB)
retcode: Failure
u: 3-element Vector{Float64}:
 10.000000000000089
 27.99999999999836
  2.6600000000010318
opt = Opt(:LN_NELDERMEAD, 3)
@btime res1 = solve(optprob, opt, maxiters = 10000, xtol_rel = 1e-12) # Inaccurate final values
69.796 ms (107436 allocations: 14.76 MiB)
retcode: Failure
u: 3-element Vector{Float64}:
  9.999999999999293
 28.000000000006864
  2.660000000001213
opt = Opt(:LD_SLSQP, 3)
@btime res1 = solve(optprob, opt, maxiters = 10000, xtol_rel = 1e-12) # Inaccurate final values
10.868 ms (15083 allocations: 2.53 MiB)
retcode: Failure
u: 3-element Vector{Float64}:
 10.000000000000107
 27.999999999998312
  2.6600000000010358

No local optimizer can improve the global solution to the true values.

minimum(root)
Error: UndefVarError: `root` not defined

Conclusion:

  1. As expected the Lorenz system is extremely sensitive to initial space values. Starting the integration from r0 = [0.1,0.0,0.0] produces convergence with the short sample of 300 observations. This can be achieved by all the global optimizers as well as most of the local optimizers. Instead starting from r0= [-11.8,-5.1,37.5], as in PODES, with the shorter sample shrinks the number of successful algorithms to 3: BBO, :GN_CRS2_LMand :LD_SLSQP. For the longer sample, all the algorithms fail.

  2. When trying to hit the real data, having a low enough tolerance on the numerical solution is key. If the numerical solution is too rough, then we can never actually hone in on the true parameters since even with the true parameters we will erroneously induce numerical error. Maybe this could be adaptive?

  3. Excessively low tolerance in the numerical solution is inefficient and delays the convergence of the estimation.

  4. The estimation method and the global versus local optimization make a huge difference in the timings. Here, BBO always find the correct solution for a global optimization setup. For local optimization, most methods in NLopt, like :LN_BOBYQA, solve the problem in <0.05 seconds. This is an algorithm that can scale a local optimization but we are aiming to scale a global optimization.

  5. QuadDIRECT performs very well on the shorter problem but doesn't give very great results for the longer in the Lorenz case, more can be read about the algorithm here.

  6. Fitting shorter timespans is easier... maybe this can lead to determining a minimal sample size for the optimizers and the estimator to succeed.

Appendix

These benchmarks are a part of the SciMLBenchmarks.jl repository, found at: https://github.com/SciML/SciMLBenchmarks.jl. For more information on high-performance scientific machine learning, check out the SciML Open Source Software Organization https://sciml.ai.

To locally run this benchmark, do the following commands:

using SciMLBenchmarks
SciMLBenchmarks.weave_file("benchmarks/ParameterEstimation","LorenzParameterEstimation.jmd")

Computer Information:

Julia Version 1.10.9
Commit 5595d20a287 (2025-03-10 12:51 UTC)
Build Info:
  Official https://julialang.org/ release
Platform Info:
  OS: Linux (x86_64-linux-gnu)
  CPU: 128 × AMD EPYC 7502 32-Core Processor
  WORD_SIZE: 64
  LIBM: libopenlibm
  LLVM: libLLVM-15.0.7 (ORCJIT, znver2)
Threads: 1 default, 0 interactive, 1 GC (on 128 virtual cores)
Environment:
  JULIA_CPU_THREADS = 128
  JULIA_DEPOT_PATH = /cache/julia-buildkite-plugin/depots/5b300254-1738-4989-ae0a-f4d2d937f953

Package Information:

Status `/cache/build/exclusive-amdci3-0/julialang/scimlbenchmarks-dot-jl/benchmarks/ParameterEstimation/Project.toml`
  [6e4b80f9] BenchmarkTools v1.6.0
  [a134a8b2] BlackBoxOptim v0.6.3
  [1130ab10] DiffEqParamEstim v2.2.0
⌃ [31c24e10] Distributions v0.25.117
⌅ [f6369f11] ForwardDiff v0.10.38
⌃ [961ee093] ModelingToolkit v9.61.0
⌃ [76087f3c] NLopt v1.1.2
⌃ [7f7a1694] Optimization v4.1.0
  [3e6eede4] OptimizationBBO v0.4.0
  [4e6fcdb7] OptimizationNLopt v0.3.2
⌃ [1dea7af3] OrdinaryDiffEq v6.90.1
  [65888b18] ParameterizedFunctions v5.17.2
⌃ [91a5bcdd] Plots v1.40.9
⌃ [731186ca] RecursiveArrayTools v3.27.4
  [31c91b34] SciMLBenchmarks v0.1.3
Info Packages marked with ⌃ and ⌅ have new versions available. Those with ⌃ may be upgradable, but those with ⌅ are restricted by compatibility constraints from upgrading. To see why use `status --outdated`
Warning The project dependencies or compat requirements have changed since the manifest was last resolved. It is recommended to `Pkg.resolve()` or consider `Pkg.update()` if necessary.

And the full manifest:

Status `/cache/build/exclusive-amdci3-0/julialang/scimlbenchmarks-dot-jl/benchmarks/ParameterEstimation/Manifest.toml`
⌃ [47edcb42] ADTypes v1.12.1
  [1520ce14] AbstractTrees v0.4.5
⌃ [7d9f7c33] Accessors v0.1.41
⌃ [79e6a3ab] Adapt v4.1.1
  [66dad0bd] AliasTables v1.1.3
  [ec485272] ArnoldiMethod v0.4.0
  [4fba245c] ArrayInterface v7.18.0
⌃ [4c555306] ArrayLayouts v1.11.0
  [6e4b80f9] BenchmarkTools v1.6.0
  [e2ed5e7c] Bijections v0.1.9
  [d1d4a3ce] BitFlags v0.1.9
  [62783981] BitTwiddlingConvenienceFunctions v0.1.6
  [a134a8b2] BlackBoxOptim v0.6.3
⌃ [8e7c35d0] BlockArrays v1.3.0
⌃ [70df07ce] BracketingNonlinearSolve v1.1.0
  [fa961155] CEnum v0.5.0
  [2a0fbf3d] CPUSummary v0.2.6
  [a9c8d775] CPUTime v1.0.0
  [00ebfdb7] CSTParser v3.4.3
  [49dc2e85] Calculus v0.5.2
  [d360d2e6] ChainRulesCore v1.25.1
  [fb6a15b2] CloseOpenIntervals v0.1.13
⌃ [944b1d66] CodecZlib v0.7.6
⌃ [35d6a980] ColorSchemes v3.28.0
  [3da002f7] ColorTypes v0.12.0
  [c3611d14] ColorVectorSpace v0.11.0
  [5ae59095] Colors v0.13.0
  [861a8166] Combinatorics v1.0.2
⌅ [a80b9123] CommonMark v0.8.15
  [38540f10] CommonSolve v0.2.4
  [bbf7d656] CommonSubexpressions v0.3.1
  [f70d9fcc] CommonWorldInvalidations v1.0.0
  [34da2185] Compat v4.16.0
  [b152e2b5] CompositeTypes v0.1.4
  [a33af91c] CompositionsBase v0.1.2
  [2569d6c7] ConcreteStructs v0.2.3
⌃ [f0e56b4a] ConcurrentUtilities v2.4.3
  [8f4d0f93] Conda v1.10.2
  [88cd18e8] ConsoleProgressMonitor v0.1.2
  [187b0558] ConstructionBase v1.5.8
  [d38c429a] Contour v0.6.3
  [adafc99b] CpuId v0.3.1
  [a8cc5b0e] Crayons v4.1.1
  [9a962f9c] DataAPI v1.16.0
⌃ [864edb3b] DataStructures v0.18.20
  [e2d170a0] DataValueInterfaces v1.0.0
  [8bb1440f] DelimitedFiles v1.9.1
  [39dd38d3] Dierckx v0.5.4
⌃ [2b5f629d] DiffEqBase v6.161.0
⌃ [459566f4] DiffEqCallbacks v4.2.2
  [77a26b50] DiffEqNoiseProcess v5.24.1
  [1130ab10] DiffEqParamEstim v2.2.0
  [163ba53b] DiffResults v1.1.0
  [b552c78f] DiffRules v1.15.1
⌃ [a0c0ee7d] DifferentiationInterface v0.6.32
  [8d63f2c5] DispatchDoctor v0.4.19
⌃ [31c24e10] Distributions v0.25.117
  [ffbed154] DocStringExtensions v0.9.3
  [5b8099bc] DomainSets v0.7.15
  [7c1d4256] DynamicPolynomials v0.6.1
⌃ [06fc5a27] DynamicQuantities v1.4.0
  [4e289a0a] EnumX v1.0.4
  [f151be2c] EnzymeCore v0.8.8
  [460bff9d] ExceptionUnwrapping v0.1.11
  [d4d017d3] ExponentialUtilities v1.27.0
  [e2ba6199] ExprTools v0.1.10
⌅ [6b7a57c9] Expronicon v0.8.5
  [c87230d0] FFMPEG v0.4.2
  [7034ab61] FastBroadcast v0.3.5
  [9aa1b823] FastClosures v0.3.2
  [442a2c76] FastGaussQuadrature v1.0.2
  [29a986be] FastLapackInterface v2.0.4
  [a4df4552] FastPower v1.1.1
  [1a297f60] FillArrays v1.13.0
  [64ca27bc] FindFirstFunctions v1.4.1
⌃ [6a86dc24] FiniteDiff v2.26.2
  [53c48c17] FixedPointNumbers v0.8.5
  [1fa38f19] Format v1.3.7
⌅ [f6369f11] ForwardDiff v0.10.38
  [069b7b12] FunctionWrappers v1.1.3
  [77dc65aa] FunctionWrappersWrappers v0.1.3
  [d9f16b24] Functors v0.5.2
  [46192b85] GPUArraysCore v0.2.0
⌃ [28b8d3ca] GR v0.73.12
  [c145ed77] GenericSchur v0.5.4
  [d7ba0133] Git v1.3.1
  [c27321d9] Glob v1.3.1
  [86223c79] Graphs v1.12.0
  [42e2da0e] Grisu v1.0.2
  [cd3eb016] HTTP v1.10.15
  [eafb193a] Highlights v0.5.3
  [3e5b6fbb] HostCPUFeatures v0.1.17
⌃ [34004b35] HypergeometricFunctions v0.3.27
  [7073ff75] IJulia v1.26.0
  [615f187c] IfElse v0.1.1
  [d25df0c9] Inflate v0.1.5
  [18e54dd8] IntegerMathUtils v0.1.2
  [8197267c] IntervalSets v0.7.10
  [3587e190] InverseFunctions v0.1.17
⌃ [92d709cd] IrrationalConstants v0.2.2
  [82899510] IteratorInterfaceExtensions v1.0.0
⌃ [1019f520] JLFzf v0.1.9
  [692b3bcd] JLLWrappers v1.7.0
  [682c06a0] JSON v0.21.4
  [98e50ef6] JuliaFormatter v1.0.62
⌃ [ccbc3e58] JumpProcesses v9.14.1
  [ef3ab10e] KLU v0.6.0
⌃ [ba0b0d4f] Krylov v0.9.9
  [5be7bae1] LBFGSB v0.4.1
  [b964fa9f] LaTeXStrings v1.4.0
⌃ [23fbe1c1] Latexify v0.16.5
  [10f19ff3] LayoutPointers v0.1.17
⌃ [5078a376] LazyArrays v2.4.0
  [1d6d02ad] LeftChildRightSiblingTrees v0.2.0
  [87fe0de2] LineSearch v0.1.4
  [d3d80556] LineSearches v7.3.0
⌅ [7ed4a6bd] LinearSolve v2.38.0
  [2ab3a3ac] LogExpFunctions v0.3.29
  [e6f89c97] LoggingExtras v1.1.0
⌃ [bdcacae8] LoopVectorization v0.12.171
  [d8e11817] MLStyle v0.4.17
  [1914dd2f] MacroTools v0.5.15
  [d125e4d3] ManualMemory v0.1.8
  [bb5d69b7] MaybeInplace v0.1.4
  [739be429] MbedTLS v1.1.9
  [442fdcdd] Measures v0.3.2
  [e1d29d7a] Missings v1.2.0
⌃ [961ee093] ModelingToolkit v9.61.0
  [46d2c3a1] MuladdMacro v0.2.4
  [102ac46a] MultivariatePolynomials v0.5.7
  [ffc61752] Mustache v1.0.20
⌃ [d8a4904e] MutableArithmetics v1.6.2
⌃ [d41bc354] NLSolversBase v7.8.3
⌃ [76087f3c] NLopt v1.1.2
⌃ [77ba4419] NaNMath v1.1.1
⌃ [8913a72c] NonlinearSolve v4.3.0
⌃ [be0214bd] NonlinearSolveBase v1.4.0
⌃ [5959db7a] NonlinearSolveFirstOrder v1.2.0
⌃ [9a2c21bd] NonlinearSolveQuasiNewton v1.1.0
  [26075421] NonlinearSolveSpectralMethods v1.1.0
⌃ [6fe1bfb0] OffsetArrays v1.15.0
  [4d8831e6] OpenSSL v1.4.3
  [429524aa] Optim v1.11.0
⌃ [7f7a1694] Optimization v4.1.0
  [3e6eede4] OptimizationBBO v0.4.0
⌃ [bca83a33] OptimizationBase v2.4.0
  [4e6fcdb7] OptimizationNLopt v0.3.2
⌃ [bac558e1] OrderedCollections v1.7.0
⌃ [1dea7af3] OrdinaryDiffEq v6.90.1
⌃ [89bda076] OrdinaryDiffEqAdamsBashforthMoulton v1.1.0
⌃ [6ad6398a] OrdinaryDiffEqBDF v1.2.0
⌃ [bbf590c4] OrdinaryDiffEqCore v1.15.1
⌃ [50262376] OrdinaryDiffEqDefault v1.2.0
⌃ [4302a76b] OrdinaryDiffEqDifferentiation v1.3.0
  [9286f039] OrdinaryDiffEqExplicitRK v1.1.0
⌃ [e0540318] OrdinaryDiffEqExponentialRK v1.2.0
⌃ [becaefa8] OrdinaryDiffEqExtrapolation v1.3.0
⌃ [5960d6e9] OrdinaryDiffEqFIRK v1.6.0
  [101fe9f7] OrdinaryDiffEqFeagin v1.1.0
  [d3585ca7] OrdinaryDiffEqFunctionMap v1.1.1
  [d28bc4f8] OrdinaryDiffEqHighOrderRK v1.1.0
⌃ [9f002381] OrdinaryDiffEqIMEXMultistep v1.2.0
  [521117fe] OrdinaryDiffEqLinear v1.1.0
  [1344f307] OrdinaryDiffEqLowOrderRK v1.2.0
⌃ [b0944070] OrdinaryDiffEqLowStorageRK v1.2.1
⌃ [127b3ac7] OrdinaryDiffEqNonlinearSolve v1.3.0
  [c9986a66] OrdinaryDiffEqNordsieck v1.1.0
⌃ [5dd0a6cf] OrdinaryDiffEqPDIRK v1.2.0
  [5b33eab2] OrdinaryDiffEqPRK v1.1.0
  [04162be5] OrdinaryDiffEqQPRK v1.1.0
  [af6ede74] OrdinaryDiffEqRKN v1.1.0
⌃ [43230ef6] OrdinaryDiffEqRosenbrock v1.4.0
⌃ [2d112036] OrdinaryDiffEqSDIRK v1.2.0
⌃ [669c94d9] OrdinaryDiffEqSSPRK v1.2.0
⌃ [e3e12d00] OrdinaryDiffEqStabilizedIRK v1.2.0
  [358294b1] OrdinaryDiffEqStabilizedRK v1.1.0
⌃ [fa646aed] OrdinaryDiffEqSymplecticRK v1.1.0
  [b1df2697] OrdinaryDiffEqTsit5 v1.1.0
  [79d7bb75] OrdinaryDiffEqVerner v1.1.1
  [90014a1f] PDMats v0.11.32
  [65ce6f38] PackageExtensionCompat v1.0.2
  [65888b18] ParameterizedFunctions v5.17.2
  [d96e819e] Parameters v0.12.3
  [69de0a69] Parsers v2.8.1
  [06bb1623] PenaltyFunctions v0.3.0
  [b98c9c47] Pipe v1.3.0
  [ccf2f8ad] PlotThemes v3.3.0
  [995b91a9] PlotUtils v1.4.3
⌃ [91a5bcdd] Plots v1.40.9
  [e409e4f3] PoissonRandom v0.4.4
  [f517fe37] Polyester v0.7.16
  [1d0040c9] PolyesterWeave v0.2.2
  [85a6dd25] PositiveFactorizations v0.2.4
⌃ [d236fae5] PreallocationTools v0.4.24
⌅ [aea7be01] PrecompileTools v1.2.1
  [21216c6a] Preferences v1.4.3
⌃ [27ebfcd6] Primes v0.5.6
  [33c8b6b6] ProgressLogging v0.1.4
  [92933f4c] ProgressMeter v1.10.2
  [43287f4e] PtrArrays v1.3.0
⌃ [1fd47b50] QuadGK v2.11.1
  [74087812] Random123 v1.7.0
  [e6cf234a] RandomNumbers v1.6.0
  [3cdcf5f2] RecipesBase v1.3.4
  [01d81517] RecipesPipeline v0.6.12
⌃ [731186ca] RecursiveArrayTools v3.27.4
  [f2c3362d] RecursiveFactorization v0.2.23
  [189a3867] Reexport v1.2.2
  [05181044] RelocatableFolders v1.0.1
⌃ [ae029012] Requires v1.3.0
  [ae5879a3] ResettableStacks v1.1.1
  [79098fc4] Rmath v0.8.0
  [7e49a35a] RuntimeGeneratedFunctions v0.5.13
  [9dfe8606] SCCNonlinearSolve v1.0.0
  [94e857df] SIMDTypes v0.1.0
  [476501e8] SLEEFPirates v0.6.43
⌃ [0bca4576] SciMLBase v2.72.1
  [31c91b34] SciMLBenchmarks v0.1.3
  [19f34311] SciMLJacobianOperators v0.1.1
⌃ [c0aeaf25] SciMLOperators v0.3.12
⌃ [53ae85a6] SciMLStructures v1.6.1
  [6c6a2e73] Scratch v1.2.1
⌃ [efcf1570] Setfield v1.1.1
  [992d4aef] Showoff v1.0.3
  [777ac1f9] SimpleBufferStream v1.2.0
⌃ [727e6d20] SimpleNonlinearSolve v2.1.0
  [699a6c99] SimpleTraits v0.9.4
  [ce78b400] SimpleUnPack v1.1.0
  [b85f4697] SoftGlobalScope v1.1.0
  [a2af1166] SortingAlgorithms v1.2.1
⌃ [9f842d2f] SparseConnectivityTracer v0.6.10
⌃ [47a9eef4] SparseDiffTools v2.23.1
⌃ [0a514795] SparseMatrixColorings v0.4.12
  [e56a9233] Sparspak v0.3.9
  [d4ead438] SpatialIndexing v0.1.6
  [276daf66] SpecialFunctions v2.5.0
  [860ef19b] StableRNGs v1.0.2
⌃ [aedffcd0] Static v1.1.1
  [0d7ed370] StaticArrayInterface v1.8.0
⌃ [90137ffa] StaticArrays v1.9.10
  [1e83bf80] StaticArraysCore v1.4.3
  [82ae8749] StatsAPI v1.7.0
  [2913bbd2] StatsBase v0.34.4
  [4c63d2b9] StatsFuns v1.3.2
  [7792a7ef] StrideArraysCore v0.5.7
  [69024149] StringEncodings v0.3.7
⌃ [2efcf032] SymbolicIndexingInterface v0.3.37
  [19f23fe9] SymbolicLimits v0.2.2
⌃ [d1185830] SymbolicUtils v3.11.0
⌃ [0c5d862f] Symbolics v6.25.0
  [3783bdb8] TableTraits v1.0.1
  [bd369af6] Tables v1.12.0
  [62fd8b95] TensorCore v0.1.1
  [8ea1fca8] TermInterface v2.0.0
  [5d786b92] TerminalLoggers v0.1.7
  [1c621080] TestItems v1.0.0
  [8290d209] ThreadingUtilities v0.5.2
⌃ [a759f4b9] TimerOutputs v0.5.26
  [0796e94c] Tokenize v0.5.29
  [3bb67fe8] TranscodingStreams v0.11.3
  [d5829a12] TriangularSolve v0.2.1
  [410a4b4d] Tricks v0.1.10
  [781d530d] TruncatedStacktraces v1.4.0
  [5c2747f8] URIs v1.5.1
  [3a884ed6] UnPack v1.0.2
  [1cfade01] UnicodeFun v0.4.1
  [1986cc42] Unitful v1.22.0
  [45397f5d] UnitfulLatexify v1.6.4
  [a7c27f48] Unityper v0.1.6
  [41fe7b60] Unzip v0.2.0
  [3d5dd08c] VectorizationBase v0.21.71
  [81def892] VersionParsing v1.3.0
  [19fa3120] VertexSafeGraphs v0.2.0
  [897b6980] WeakValueDicts v0.1.0
  [44d3d7a6] Weave v0.10.12
⌃ [ddb6d928] YAML v0.4.12
  [c2297ded] ZMQ v1.4.0
⌃ [6e34b625] Bzip2_jll v1.0.8+4
⌃ [83423d85] Cairo_jll v1.18.2+1
  [ee1fde0b] Dbus_jll v1.14.10+0
  [cd4c43a9] Dierckx_jll v0.2.0+0
  [2702e6a9] EpollShim_jll v0.0.20230411+1
⌃ [2e619515] Expat_jll v2.6.4+3
⌅ [b22a6f82] FFMPEG_jll v4.4.4+1
  [a3f928ae] Fontconfig_jll v2.15.0+0
  [d7e528f0] FreeType2_jll v2.13.3+1
  [559328eb] FriBidi_jll v1.0.16+0
  [0656b61e] GLFW_jll v3.4.0+2
⌅ [d2c73de3] GR_jll v0.73.12+0
  [78b55507] Gettext_jll v0.21.0+0
⌃ [f8c6e375] Git_jll v2.47.1+0
⌃ [7746bdde] Glib_jll v2.82.4+0
  [3b182d85] Graphite2_jll v1.3.14+1
  [2e76f6c2] HarfBuzz_jll v8.5.0+0
  [1d5cc7b8] IntelOpenMP_jll v2025.0.4+0
  [aacddb02] JpegTurbo_jll v3.1.1+0
  [c1c5ebd0] LAME_jll v3.100.2+0
  [88015f11] LERC_jll v4.0.1+0
  [1d63c593] LLVMOpenMP_jll v18.1.7+0
  [dd4b983a] LZO_jll v2.10.3+0
  [81d17ec3] L_BFGS_B_jll v3.0.1+0
⌅ [e9f186c6] Libffi_jll v3.2.2+2
  [d4300ac3] Libgcrypt_jll v1.11.0+0
  [7e76a0d4] Libglvnd_jll v1.7.0+0
  [7add5ba3] Libgpg_error_jll v1.51.1+0
  [94ce4f54] Libiconv_jll v1.18.0+0
  [4b2f31a3] Libmount_jll v2.40.3+0
  [89763e89] Libtiff_jll v4.7.1+0
  [38a345b3] Libuuid_jll v2.40.3+0
  [856f044c] MKL_jll v2025.0.1+1
⌃ [079eb43e] NLopt_jll v2.9.0+0
  [e7412a2a] Ogg_jll v1.3.5+1
⌃ [458c3c95] OpenSSL_jll v3.0.15+3
  [efe28fd5] OpenSpecFun_jll v0.5.6+0
  [91d4177d] Opus_jll v1.3.3+0
⌃ [36c8627f] Pango_jll v1.55.5+0
⌅ [30392449] Pixman_jll v0.43.4+0
⌅ [c0090381] Qt6Base_jll v6.7.1+1
⌅ [629bc702] Qt6Declarative_jll v6.7.1+2
⌅ [ce943373] Qt6ShaderTools_jll v6.7.1+1
⌃ [e99dba38] Qt6Wayland_jll v6.7.1+1
  [f50d1b31] Rmath_jll v0.5.1+0
  [a44049a8] Vulkan_Loader_jll v1.3.243+0
  [a2964d1f] Wayland_jll v1.21.0+2
  [2381bf8a] Wayland_protocols_jll v1.36.0+0
⌃ [02c8fc9c] XML2_jll v2.13.5+0
  [aed1982a] XSLT_jll v1.1.42+0
  [ffd25f8a] XZ_jll v5.6.4+1
  [f67eecfb] Xorg_libICE_jll v1.1.1+0
  [c834827a] Xorg_libSM_jll v1.2.4+0
  [4f6342f7] Xorg_libX11_jll v1.8.6+3
  [0c0b7dd1] Xorg_libXau_jll v1.0.12+0
  [935fb764] Xorg_libXcursor_jll v1.2.3+0
  [a3789734] Xorg_libXdmcp_jll v1.1.5+0
  [1082639a] Xorg_libXext_jll v1.3.6+3
  [d091e8ba] Xorg_libXfixes_jll v6.0.0+0
  [a51aa0fd] Xorg_libXi_jll v1.8.2+0
  [d1454406] Xorg_libXinerama_jll v1.1.5+0
  [ec84b674] Xorg_libXrandr_jll v1.5.4+0
  [ea2f1a96] Xorg_libXrender_jll v0.9.11+1
  [14d82f49] Xorg_libpthread_stubs_jll v0.1.2+0
  [c7cfdc94] Xorg_libxcb_jll v1.17.0+3
  [cc61e674] Xorg_libxkbfile_jll v1.1.2+1
  [e920d4aa] Xorg_xcb_util_cursor_jll v0.1.4+0
  [12413925] Xorg_xcb_util_image_jll v0.4.0+1
  [2def613f] Xorg_xcb_util_jll v0.4.0+1
  [975044d2] Xorg_xcb_util_keysyms_jll v0.4.0+1
  [0d47668e] Xorg_xcb_util_renderutil_jll v0.3.9+1
  [c22f9ab0] Xorg_xcb_util_wm_jll v0.4.1+1
  [35661453] Xorg_xkbcomp_jll v1.4.6+1
  [33bec58e] Xorg_xkeyboard_config_jll v2.39.0+0
  [c5fb5394] Xorg_xtrans_jll v1.5.1+0
⌃ [8f1865be] ZeroMQ_jll v4.3.5+3
⌃ [3161d3a3] Zstd_jll v1.5.7+0
  [35ca27e7] eudev_jll v3.2.9+0
  [214eeab7] fzf_jll v0.56.3+0
  [1a1c6b14] gperf_jll v3.1.1+1
  [a4ae2306] libaom_jll v3.11.0+0
  [0ac62f75] libass_jll v0.15.2+0
  [1183f4f0] libdecor_jll v0.2.2+0
  [2db6ffa8] libevdev_jll v1.11.0+0
  [f638f0a6] libfdk_aac_jll v2.0.3+0
  [36db933b] libinput_jll v1.18.0+0
⌃ [b53b4c65] libpng_jll v1.6.45+1
⌃ [a9144af2] libsodium_jll v1.0.20+3
  [f27f6e37] libvorbis_jll v1.3.7+2
  [009596ad] mtdev_jll v1.1.6+0
⌃ [1317d2d5] oneTBB_jll v2021.12.0+0
⌅ [1270edf5] x264_jll v2021.5.5+0
⌅ [dfaa095f] x265_jll v3.5.0+0
  [d8fb68d0] xkbcommon_jll v1.4.1+2
  [0dad84c5] ArgTools v1.1.1
  [56f22d72] Artifacts
  [2a0f44e3] Base64
  [ade2ca70] Dates
  [8ba89e20] Distributed
  [f43a241f] Downloads v1.6.0
  [7b1f6079] FileWatching
  [9fa8497b] Future
  [b77e0a4c] InteractiveUtils
  [4af54fe1] LazyArtifacts
  [b27032c2] LibCURL v0.6.4
  [76f85450] LibGit2
  [8f399da3] Libdl
  [37e2e46d] LinearAlgebra
  [56ddb016] Logging
  [d6f4376e] Markdown
  [a63ad114] Mmap
  [ca575930] NetworkOptions v1.2.0
  [44cfe95a] Pkg v1.10.0
  [de0858da] Printf
  [9abbd945] Profile
  [3fa0cd96] REPL
  [9a3f8284] Random
  [ea8e919c] SHA v0.7.0
  [9e88b42a] Serialization
  [1a1011a3] SharedArrays
  [6462fe0b] Sockets
  [2f01184e] SparseArrays v1.10.0
  [10745b16] Statistics v1.10.0
  [4607b0f0] SuiteSparse
  [fa267f1f] TOML v1.0.3
  [a4e569a6] Tar v1.10.0
  [8dfed614] Test
  [cf7118a7] UUIDs
  [4ec0a83e] Unicode
  [e66e0078] CompilerSupportLibraries_jll v1.1.1+0
  [deac9b47] LibCURL_jll v8.4.0+0
  [e37daf67] LibGit2_jll v1.6.4+0
  [29816b5a] LibSSH2_jll v1.11.0+1
  [c8ffd9c3] MbedTLS_jll v2.28.2+1
  [14a3606d] MozillaCACerts_jll v2023.1.10
  [4536629a] OpenBLAS_jll v0.3.23+4
  [05823500] OpenLibm_jll v0.8.1+2
  [efcefdf7] PCRE2_jll v10.42.0+1
  [bea87d4a] SuiteSparse_jll v7.2.1+1
  [83775a58] Zlib_jll v1.2.13+1
  [8e850b90] libblastrampoline_jll v5.11.0+0
  [8e850ede] nghttp2_jll v1.52.0+1
  [3f19e933] p7zip_jll v17.4.0+2
Info Packages marked with ⌃ and ⌅ have new versions available. Those with ⌃ may be upgradable, but those with ⌅ are restricted by compatibility constraints from upgrading. To see why use `status --outdated -m`
Warning The project dependencies or compat requirements have changed since the manifest was last resolved. It is recommended to `Pkg.resolve()` or consider `Pkg.update()` if necessary.