Lotka-Volterra Parameter Estimation Benchmarks
Parameter estimation of Lotka Volterra model using optimisation methods
using ParameterizedFunctions, OrdinaryDiffEq, DiffEqParamEstim, Optimization, ForwardDiff
using OptimizationBBO, OptimizationNLopt, Plots, RecursiveArrayTools, BenchmarkTools
using ModelingToolkit: t_nounits as t, D_nounits as D
gr(fmt=:png)
Plots.GRBackend()
loc_bounds = Tuple{Float64, Float64}[(0, 5), (0, 5), (0, 5), (0, 5)]
glo_bounds = Tuple{Float64, Float64}[(0, 10), (0, 10), (0, 10), (0, 10)]
loc_init = [1,0.5,3.5,1.5]
glo_init = [5.0,5.0,5.0,5.0]
4-element Vector{Float64}:
5.0
5.0
5.0
5.0
@mtkmodel LotkaVolterraTest begin
@parameters begin
a = 1.5 # Growth rate of prey
b = 1.0 # Predation rate
c = 3.0 # Death rate of predators
d = 1.0 # Reproduction rate of predators
e = 0.0 # Additional parameter (if needed)
end
@variables begin
x(t) = 1.0 # Population of prey with initial condition
y(t) = 1.0 # Population of predators with initial condition
end
@equations begin
D(x) ~ a * x - b * x * y
D(y) ~ -c * y + d * x * y
end
end
@mtkbuild f = LotkaVolterraTest()
Model f:
Equations (2):
2 standard: see equations(f)
Unknowns (2): see unknowns(f)
x(t) [defaults to 1.0]
y(t) [defaults to 1.0]
Parameters (5): see parameters(f)
a [defaults to 1.5]
d [defaults to 1.0]
b [defaults to 1.0]
e [defaults to 0.0]
⋮
u0 = [1.0,1.0] #initial values
tspan = (0.0,10.0)
p = [1.5,1.0,3.0,1,0] #parameters used, these need to be estimated from the data
tspan = (0.0, 30.0) # sample of 3000 observations over the (0,30) timespan
prob = ODEProblem(f, u0, tspan,p)
tspan2 = (0.0, 3.0) # sample of 3000 observations over the (0,30) timespan
prob_short = ODEProblem(f, u0, tspan2,p)
ODEProblem with uType Vector{Float64} and tType Float64. In-place: true
timespan: (0.0, 3.0)
u0: 2-element Vector{Float64}:
1.0
1.0
dt = 30.0/3000
tf = 30.0
tinterval = 0:dt:tf
time_points = collect(tinterval)
3001-element Vector{Float64}:
0.0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
⋮
29.92
29.93
29.94
29.95
29.96
29.97
29.98
29.99
30.0
h = 0.01
M = 300
tstart = 0.0
tstop = tstart + M * h
tinterval_short = 0:h:tstop
t_short = collect(tinterval_short)
301-element Vector{Float64}:
0.0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
⋮
2.92
2.93
2.94
2.95
2.96
2.97
2.98
2.99
3.0
#Generate Data
data_sol_short = solve(prob_short,Tsit5(),saveat=t_short,reltol=1e-9,abstol=1e-9)
data_short = convert(Array, data_sol_short)
data_sol = solve(prob,Tsit5(),saveat=time_points,reltol=1e-9,abstol=1e-9)
data = convert(Array, data_sol)
2×3001 Matrix{Float64}:
1.0 0.984964 0.969865 0.954715 0.939523 … 3.23047e-10 3.12995e-10
1.0 1.00997 1.01989 1.02976 1.03956 1.55363 1.55363
Plot of the solution
Short Solution
p1 = plot(data_sol_short)
Longer Solution
p2 = plot(data_sol)
Local Solution from the short data set
obj_short = build_loss_objective(prob_short,Tsit5(),L2Loss(t_short,data_short),tstops=t_short)
optprob = OptimizationProblem(obj_short, loc_init, lb = first.(loc_bounds), ub = last.(loc_bounds))
@btime res1 = solve(optprob, BBO_adaptive_de_rand_1_bin(); maxiters = 7e3)
# Lower tolerance could lead to smaller fitness (more accuracy)
1.194 s (2614253 allocations: 365.42 MiB)
retcode: MaxIters
u: 4-element Vector{Float64}:
1.500214965467566
1.0000024750180068
3.0001750483239555
2.637318438652911
obj_short = build_loss_objective(prob_short,Tsit5(),L2Loss(t_short,data_short),tstops=t_short,reltol=1e-9)
optprob = OptimizationProblem(obj_short, loc_init, lb = first.(loc_bounds), ub = last.(loc_bounds))
@btime res1 = solve(optprob, BBO_adaptive_de_rand_1_bin(); maxiters = 7e3)
# Change in tolerance makes it worse
1.219 s (2613157 allocations: 365.26 MiB)
retcode: MaxIters
u: 4-element Vector{Float64}:
1.499974225730644
0.9999952271858773
2.999973052611709
2.230546883489635
obj_short = build_loss_objective(prob_short,Vern9(),L2Loss(t_short,data_short),tstops=t_short,reltol=1e-9,abstol=1e-9)
optprob = OptimizationProblem(obj_short, loc_init, lb = first.(loc_bounds), ub = last.(loc_bounds))
@btime res1 = solve(optprob, BBO_adaptive_de_rand_1_bin(); maxiters = 7e3)
# using the moe accurate Vern9() reduces the fitness marginally and leads to some increase in time taken
1.716 s (2652560 allocations: 370.04 MiB)
retcode: MaxIters
u: 4-element Vector{Float64}:
1.5000042547804053
1.0000157391806568
3.0000489057559867
0.1405331999454995
Using NLopt
Global Optimisation first
obj_short = build_loss_objective(prob_short,Vern9(),L2Loss(t_short,data_short), Optimization.AutoForwardDiff(), tstops=t_short,reltol=1e-9,abstol=1e-9)
optprob = OptimizationProblem(obj_short, glo_init, lb = first.(glo_bounds), ub = last.(glo_bounds))
OptimizationProblem. In-place: true
u0: 4-element Vector{Float64}:
5.0
5.0
5.0
5.0
opt = Opt(:GN_ORIG_DIRECT_L, 4)
@btime res1 = solve(optprob, opt, maxiters = 10000, xtol_rel = 1e-12)
370.191 ms (578188 allocations: 79.50 MiB)
retcode: Failure
u: 4-element Vector{Float64}:
2.9629629629570617
1.112635269019771
4.444444444446411
5.183661027276527
opt = Opt(:GN_CRS2_LM, 4)
@btime res1 = solve(optprob, opt, maxiters = 10000, xtol_rel = 1e-12)
1.806 s (2480017 allocations: 341.07 MiB)
retcode: MaxIters
u: 4-element Vector{Float64}:
1.5000000007104524
1.000000000066415
3.00000000072833
8.609730365585019
opt = Opt(:GN_ISRES, 4)
@btime res1 = solve(optprob, opt, maxiters = 10000, xtol_rel = 1e-12)
2.551 s (3760116 allocations: 517.13 MiB)
retcode: MaxIters
u: 4-element Vector{Float64}:
3.2101820934868086
3.102703061056422
6.23284316667356
3.0228330952260194
opt = Opt(:GN_ESCH, 4)
@btime res1 = solve(optprob, opt, maxiters = 10000, xtol_rel = 1e-12)
2.742 s (3760136 allocations: 517.13 MiB)
retcode: MaxIters
u: 4-element Vector{Float64}:
0.41717752397541985
1.0152957354634846
2.1590654457868057
0.3327333284030529
Now local optimization algorithms are used to check the global ones, these use the local constraints, different initial values and time step
optprob = OptimizationProblem(obj_short, loc_init, lb = first.(loc_bounds), ub = last.(loc_bounds))
OptimizationProblem. In-place: true
u0: 4-element Vector{Float64}:
1.0
0.5
3.5
1.5
opt = Opt(:LN_BOBYQA, 4)
@btime res1 = solve(optprob, opt, maxiters = 10000, xtol_rel = 1e-12)
22.004 ms (32988 allocations: 4.52 MiB)
retcode: Success
u: 4-element Vector{Float64}:
1.5000000007152077
1.0000000000665352
3.0000000007324514
1.3140958126026705
opt = Opt(:LN_NELDERMEAD, 4)
@btime res1 = solve(optprob, opt, maxiters = 10000, xtol_rel = 1e-12)
356.796 ms (516524 allocations: 71.02 MiB)
retcode: Failure
u: 4-element Vector{Float64}:
1.50000000071043
1.0000000000664235
3.000000000728334
1.3358196081664195
opt = Opt(:LD_SLSQP, 4)
@btime res1 = solve(optprob, opt, maxiters = 10000, xtol_rel = 1e-12)
33.718 s (21641385 allocations: 4.22 GiB)
retcode: MaxIters
u: 4-element Vector{Float64}:
2.0
1.625
2.625
1.125
opt = Opt(:LN_COBYLA, 4)
@btime res1 = solve(optprob, opt, maxiters = 10000, xtol_rel = 1e-12)
2.761 s (3760144 allocations: 517.13 MiB)
retcode: MaxIters
u: 4-element Vector{Float64}:
1.6469631689746635
0.9994654455200698
3.117789184493826
1.5182360928459269
opt = Opt(:LN_NEWUOA_BOUND, 4)
@btime res1 = solve(optprob, opt, maxiters = 10000, xtol_rel = 1e-12)
198.261 ms (154304 allocations: 21.21 MiB)
retcode: Success
u: 4-element Vector{Float64}:
1.5487464181140709
0.999840139235765
3.0391418493128373
1.3642113819198016
opt = Opt(:LN_PRAXIS, 4)
@btime res1 = solve(optprob, opt, maxiters = 10000, xtol_rel = 1e-12)
19.411 ms (31768 allocations: 4.38 MiB)
retcode: Failure
u: 4-element Vector{Float64}:
1.0
0.5
3.5
1.5
opt = Opt(:LN_SBPLX, 4)
@btime res1 = solve(optprob, opt, maxiters = 10000, xtol_rel = 1e-12)
2.421 s (3760136 allocations: 517.13 MiB)
retcode: MaxIters
u: 4-element Vector{Float64}:
1.5000005835389816
0.9999999986401436
3.000000468839309
1.8838550099135751
opt = Opt(:LD_MMA, 4)
@btime res1 = solve(optprob, opt, maxiters = 10000, xtol_rel = 1e-12)
6.769 s (7370358 allocations: 1.20 GiB)
retcode: MaxIters
u: 4-element Vector{Float64}:
1.0
0.5
3.5
1.5
opt = Opt(:LD_TNEWTON_PRECOND_RESTART, 4)
@btime res1 = solve(optprob, opt, maxiters = 10000, xtol_rel = 1e-12)
875.323 μs (1235 allocations: 177.48 KiB)
retcode: Failure
u: 4-element Vector{Float64}:
1.0
0.5
3.5
1.5
Now the longer problem is solved for a global solution
Vern9 solver with reltol=1e-9 and abstol=1e-9 is used and the dataset is increased to 3000 observations per variable with the same integration time step of 0.01.
t_concrete = collect(0.0:dt:tf)
obj = build_loss_objective(prob,Vern9(),L2Loss(t_concrete,data),tstops=t_concrete,reltol=1e-9,abstol=1e-9)
optprob = OptimizationProblem(obj, glo_init, lb =first.(glo_bounds), ub = last.(glo_bounds))
OptimizationProblem. In-place: true
u0: 4-element Vector{Float64}:
5.0
5.0
5.0
5.0
@btime res1 = solve(optprob, BBO_adaptive_de_rand_1_bin(), maxiters = 4e3)
10.602 s (12704588 allocations: 1.66 GiB)
retcode: MaxIters
u: 4-element Vector{Float64}:
1.4885687659607436
1.0011714661862494
2.99416289933156
9.296455885807822
opt = Opt(:GN_ORIG_DIRECT_L, 4)
@btime res1 = solve(optprob, opt, maxiters = 10000, xtol_rel = 1e-12)
5.275 s (5886150 allocations: 783.86 MiB)
retcode: Failure
u: 4-element Vector{Float64}:
2.5514403292122063
1.604938271606906
4.938271604944172
8.353909465014675
opt = Opt(:GN_CRS2_LM, 4)
@btime res1 = solve(optprob, opt, maxiters = 20000, xtol_rel = 1e-12)
30.086 s (33879834 allocations: 4.41 GiB)
retcode: Failure
u: 4-element Vector{Float64}:
1.5000000005815561
1.0000000000683134
3.000000000619062
0.0
opt = Opt(:GN_ISRES, 4)
@btime res1 = solve(optprob, opt, maxiters = 50000, xtol_rel = 1e-12)
126.998 s (153970386 allocations: 20.03 GiB)
retcode: MaxIters
u: 4-element Vector{Float64}:
2.7654422322632435
5.137708728727137
4.831283307687359
0.1431635686737227
opt = Opt(:GN_ESCH, 4)
@btime res1 = solve(optprob, opt, maxiters = 20000, xtol_rel = 1e-12)
54.391 s (61600130 allocations: 8.01 GiB)
retcode: MaxIters
u: 4-element Vector{Float64}:
5.164220594437419
0.8056708844950282
5.576026825177544
6.963544609522616
Local problem
obj = build_loss_objective(prob,Vern9(),L2Loss(t,data),Optimization.AutoForwardDiff(),tstops=t,reltol=1e-9,abstol=1e-9)
optprob = OptimizationProblem(obj_short, loc_init, lb = first.(loc_bounds), ub = last.(loc_bounds))
OptimizationProblem. In-place: true
u0: 4-element Vector{Float64}:
1.0
0.5
3.5
1.5
opt = Opt(:LN_BOBYQA, 4)
@btime res1 = solve(optprob, opt, maxiters = 10000, xtol_rel = 1e-12)
54.861 ms (86248 allocations: 11.85 MiB)
retcode: Success
u: 4-element Vector{Float64}:
1.5000000007152077
1.0000000000665352
3.0000000007324514
1.3140958126026705
opt = Opt(:LN_NELDERMEAD, 4)
@btime res1 = solve(optprob, opt, maxiters = 10000, xtol_rel = 1e-12)
357.405 ms (516524 allocations: 71.02 MiB)
retcode: Failure
u: 4-element Vector{Float64}:
1.50000000071043
1.0000000000664235
3.000000000728334
1.3358196081664195
opt = Opt(:LD_SLSQP, 4)
@btime res1 = solve(optprob, opt, maxiters = 10000, xtol_rel = 1e-12)
975.504 μs (1014 allocations: 147.74 KiB)
retcode: Failure
u: 4-element Vector{Float64}:
4.021234894406051
3.899461050223107
3.412580878071708
1.5000471446870371
Parameter estimation on the longer sample proves to be extremely challenging for some of the global optimizers. A few give the accurate values, BlacBoxOptim also performs quite well while others seem to struggle with accuracy a lot.
Conclusion
In general we observe that lower tolerance lead to higher accuracy but too low tolerance could affect the convergence time drastically. Also fitting a shorter timespan seems to be easier in comparison (quite intuitively). NLOpt methods seem to give great accuracy in the shorter problem with a lot of the algorithms giving 0 fitness, BBO performs very well on it with marginal change with tol
values. In case of global optimization of the longer problem there is some difference in the performance amongst the algorithms with LD_SLSQP
GN_ESCH
GN_ISRES
GN_ORIG_DIRECT_L
performing among the worse, BBO also gives a bit high fitness in comparison. QuadDIRECT gives accurate results in the case of the shorter problem but doesn't perform very well in the longer problem case.
Appendix
These benchmarks are a part of the SciMLBenchmarks.jl repository, found at: https://github.com/SciML/SciMLBenchmarks.jl. For more information on high-performance scientific machine learning, check out the SciML Open Source Software Organization https://sciml.ai.
To locally run this benchmark, do the following commands:
using SciMLBenchmarks
SciMLBenchmarks.weave_file("benchmarks/ParameterEstimation","LotkaVolterraParameterEstimation.jmd")
Computer Information:
Julia Version 1.10.9
Commit 5595d20a287 (2025-03-10 12:51 UTC)
Build Info:
Official https://julialang.org/ release
Platform Info:
OS: Linux (x86_64-linux-gnu)
CPU: 128 × AMD EPYC 7502 32-Core Processor
WORD_SIZE: 64
LIBM: libopenlibm
LLVM: libLLVM-15.0.7 (ORCJIT, znver2)
Threads: 1 default, 0 interactive, 1 GC (on 128 virtual cores)
Environment:
JULIA_CPU_THREADS = 128
JULIA_DEPOT_PATH = /cache/julia-buildkite-plugin/depots/5b300254-1738-4989-ae0a-f4d2d937f953
Package Information:
Status `/cache/build/exclusive-amdci3-0/julialang/scimlbenchmarks-dot-jl/benchmarks/ParameterEstimation/Project.toml`
[6e4b80f9] BenchmarkTools v1.6.0
[a134a8b2] BlackBoxOptim v0.6.3
[1130ab10] DiffEqParamEstim v2.2.0
⌃ [31c24e10] Distributions v0.25.117
⌅ [f6369f11] ForwardDiff v0.10.38
⌃ [961ee093] ModelingToolkit v9.61.0
⌃ [76087f3c] NLopt v1.1.2
⌃ [7f7a1694] Optimization v4.1.0
[3e6eede4] OptimizationBBO v0.4.0
[4e6fcdb7] OptimizationNLopt v0.3.2
⌃ [1dea7af3] OrdinaryDiffEq v6.90.1
[65888b18] ParameterizedFunctions v5.17.2
⌃ [91a5bcdd] Plots v1.40.9
⌃ [731186ca] RecursiveArrayTools v3.27.4
[31c91b34] SciMLBenchmarks v0.1.3
Info Packages marked with ⌃ and ⌅ have new versions available. Those with ⌃ may be upgradable, but those with ⌅ are restricted by compatibility constraints from upgrading. To see why use `status --outdated`
Warning The project dependencies or compat requirements have changed since the manifest was last resolved. It is recommended to `Pkg.resolve()` or consider `Pkg.update()` if necessary.
And the full manifest:
Status `/cache/build/exclusive-amdci3-0/julialang/scimlbenchmarks-dot-jl/benchmarks/ParameterEstimation/Manifest.toml`
⌃ [47edcb42] ADTypes v1.12.1
[1520ce14] AbstractTrees v0.4.5
⌃ [7d9f7c33] Accessors v0.1.41
⌃ [79e6a3ab] Adapt v4.1.1
[66dad0bd] AliasTables v1.1.3
[ec485272] ArnoldiMethod v0.4.0
[4fba245c] ArrayInterface v7.18.0
⌃ [4c555306] ArrayLayouts v1.11.0
[6e4b80f9] BenchmarkTools v1.6.0
[e2ed5e7c] Bijections v0.1.9
[d1d4a3ce] BitFlags v0.1.9
[62783981] BitTwiddlingConvenienceFunctions v0.1.6
[a134a8b2] BlackBoxOptim v0.6.3
⌃ [8e7c35d0] BlockArrays v1.3.0
⌃ [70df07ce] BracketingNonlinearSolve v1.1.0
[fa961155] CEnum v0.5.0
[2a0fbf3d] CPUSummary v0.2.6
[a9c8d775] CPUTime v1.0.0
[00ebfdb7] CSTParser v3.4.3
[49dc2e85] Calculus v0.5.2
[d360d2e6] ChainRulesCore v1.25.1
[fb6a15b2] CloseOpenIntervals v0.1.13
⌃ [944b1d66] CodecZlib v0.7.6
⌃ [35d6a980] ColorSchemes v3.28.0
[3da002f7] ColorTypes v0.12.0
[c3611d14] ColorVectorSpace v0.11.0
[5ae59095] Colors v0.13.0
[861a8166] Combinatorics v1.0.2
⌅ [a80b9123] CommonMark v0.8.15
[38540f10] CommonSolve v0.2.4
[bbf7d656] CommonSubexpressions v0.3.1
[f70d9fcc] CommonWorldInvalidations v1.0.0
[34da2185] Compat v4.16.0
[b152e2b5] CompositeTypes v0.1.4
[a33af91c] CompositionsBase v0.1.2
[2569d6c7] ConcreteStructs v0.2.3
⌃ [f0e56b4a] ConcurrentUtilities v2.4.3
[8f4d0f93] Conda v1.10.2
[88cd18e8] ConsoleProgressMonitor v0.1.2
[187b0558] ConstructionBase v1.5.8
[d38c429a] Contour v0.6.3
[adafc99b] CpuId v0.3.1
[a8cc5b0e] Crayons v4.1.1
[9a962f9c] DataAPI v1.16.0
⌃ [864edb3b] DataStructures v0.18.20
[e2d170a0] DataValueInterfaces v1.0.0
[8bb1440f] DelimitedFiles v1.9.1
[39dd38d3] Dierckx v0.5.4
⌃ [2b5f629d] DiffEqBase v6.161.0
⌃ [459566f4] DiffEqCallbacks v4.2.2
[77a26b50] DiffEqNoiseProcess v5.24.1
[1130ab10] DiffEqParamEstim v2.2.0
[163ba53b] DiffResults v1.1.0
[b552c78f] DiffRules v1.15.1
⌃ [a0c0ee7d] DifferentiationInterface v0.6.32
[8d63f2c5] DispatchDoctor v0.4.19
⌃ [31c24e10] Distributions v0.25.117
[ffbed154] DocStringExtensions v0.9.3
[5b8099bc] DomainSets v0.7.15
[7c1d4256] DynamicPolynomials v0.6.1
⌃ [06fc5a27] DynamicQuantities v1.4.0
[4e289a0a] EnumX v1.0.4
[f151be2c] EnzymeCore v0.8.8
[460bff9d] ExceptionUnwrapping v0.1.11
[d4d017d3] ExponentialUtilities v1.27.0
[e2ba6199] ExprTools v0.1.10
⌅ [6b7a57c9] Expronicon v0.8.5
[c87230d0] FFMPEG v0.4.2
[7034ab61] FastBroadcast v0.3.5
[9aa1b823] FastClosures v0.3.2
[442a2c76] FastGaussQuadrature v1.0.2
[29a986be] FastLapackInterface v2.0.4
[a4df4552] FastPower v1.1.1
[1a297f60] FillArrays v1.13.0
[64ca27bc] FindFirstFunctions v1.4.1
⌃ [6a86dc24] FiniteDiff v2.26.2
[53c48c17] FixedPointNumbers v0.8.5
[1fa38f19] Format v1.3.7
⌅ [f6369f11] ForwardDiff v0.10.38
[069b7b12] FunctionWrappers v1.1.3
[77dc65aa] FunctionWrappersWrappers v0.1.3
[d9f16b24] Functors v0.5.2
[46192b85] GPUArraysCore v0.2.0
⌃ [28b8d3ca] GR v0.73.12
[c145ed77] GenericSchur v0.5.4
[d7ba0133] Git v1.3.1
[c27321d9] Glob v1.3.1
[86223c79] Graphs v1.12.0
[42e2da0e] Grisu v1.0.2
[cd3eb016] HTTP v1.10.15
[eafb193a] Highlights v0.5.3
[3e5b6fbb] HostCPUFeatures v0.1.17
⌃ [34004b35] HypergeometricFunctions v0.3.27
[7073ff75] IJulia v1.26.0
[615f187c] IfElse v0.1.1
[d25df0c9] Inflate v0.1.5
[18e54dd8] IntegerMathUtils v0.1.2
[8197267c] IntervalSets v0.7.10
[3587e190] InverseFunctions v0.1.17
⌃ [92d709cd] IrrationalConstants v0.2.2
[82899510] IteratorInterfaceExtensions v1.0.0
⌃ [1019f520] JLFzf v0.1.9
[692b3bcd] JLLWrappers v1.7.0
[682c06a0] JSON v0.21.4
[98e50ef6] JuliaFormatter v1.0.62
⌃ [ccbc3e58] JumpProcesses v9.14.1
[ef3ab10e] KLU v0.6.0
⌃ [ba0b0d4f] Krylov v0.9.9
[5be7bae1] LBFGSB v0.4.1
[b964fa9f] LaTeXStrings v1.4.0
⌃ [23fbe1c1] Latexify v0.16.5
[10f19ff3] LayoutPointers v0.1.17
⌃ [5078a376] LazyArrays v2.4.0
[1d6d02ad] LeftChildRightSiblingTrees v0.2.0
[87fe0de2] LineSearch v0.1.4
[d3d80556] LineSearches v7.3.0
⌅ [7ed4a6bd] LinearSolve v2.38.0
[2ab3a3ac] LogExpFunctions v0.3.29
[e6f89c97] LoggingExtras v1.1.0
⌃ [bdcacae8] LoopVectorization v0.12.171
[d8e11817] MLStyle v0.4.17
[1914dd2f] MacroTools v0.5.15
[d125e4d3] ManualMemory v0.1.8
[bb5d69b7] MaybeInplace v0.1.4
[739be429] MbedTLS v1.1.9
[442fdcdd] Measures v0.3.2
[e1d29d7a] Missings v1.2.0
⌃ [961ee093] ModelingToolkit v9.61.0
[46d2c3a1] MuladdMacro v0.2.4
[102ac46a] MultivariatePolynomials v0.5.7
[ffc61752] Mustache v1.0.20
⌃ [d8a4904e] MutableArithmetics v1.6.2
⌃ [d41bc354] NLSolversBase v7.8.3
⌃ [76087f3c] NLopt v1.1.2
⌃ [77ba4419] NaNMath v1.1.1
⌃ [8913a72c] NonlinearSolve v4.3.0
⌃ [be0214bd] NonlinearSolveBase v1.4.0
⌃ [5959db7a] NonlinearSolveFirstOrder v1.2.0
⌃ [9a2c21bd] NonlinearSolveQuasiNewton v1.1.0
[26075421] NonlinearSolveSpectralMethods v1.1.0
⌃ [6fe1bfb0] OffsetArrays v1.15.0
[4d8831e6] OpenSSL v1.4.3
[429524aa] Optim v1.11.0
⌃ [7f7a1694] Optimization v4.1.0
[3e6eede4] OptimizationBBO v0.4.0
⌃ [bca83a33] OptimizationBase v2.4.0
[4e6fcdb7] OptimizationNLopt v0.3.2
⌃ [bac558e1] OrderedCollections v1.7.0
⌃ [1dea7af3] OrdinaryDiffEq v6.90.1
⌃ [89bda076] OrdinaryDiffEqAdamsBashforthMoulton v1.1.0
⌃ [6ad6398a] OrdinaryDiffEqBDF v1.2.0
⌃ [bbf590c4] OrdinaryDiffEqCore v1.15.1
⌃ [50262376] OrdinaryDiffEqDefault v1.2.0
⌃ [4302a76b] OrdinaryDiffEqDifferentiation v1.3.0
[9286f039] OrdinaryDiffEqExplicitRK v1.1.0
⌃ [e0540318] OrdinaryDiffEqExponentialRK v1.2.0
⌃ [becaefa8] OrdinaryDiffEqExtrapolation v1.3.0
⌃ [5960d6e9] OrdinaryDiffEqFIRK v1.6.0
[101fe9f7] OrdinaryDiffEqFeagin v1.1.0
[d3585ca7] OrdinaryDiffEqFunctionMap v1.1.1
[d28bc4f8] OrdinaryDiffEqHighOrderRK v1.1.0
⌃ [9f002381] OrdinaryDiffEqIMEXMultistep v1.2.0
[521117fe] OrdinaryDiffEqLinear v1.1.0
[1344f307] OrdinaryDiffEqLowOrderRK v1.2.0
⌃ [b0944070] OrdinaryDiffEqLowStorageRK v1.2.1
⌃ [127b3ac7] OrdinaryDiffEqNonlinearSolve v1.3.0
[c9986a66] OrdinaryDiffEqNordsieck v1.1.0
⌃ [5dd0a6cf] OrdinaryDiffEqPDIRK v1.2.0
[5b33eab2] OrdinaryDiffEqPRK v1.1.0
[04162be5] OrdinaryDiffEqQPRK v1.1.0
[af6ede74] OrdinaryDiffEqRKN v1.1.0
⌃ [43230ef6] OrdinaryDiffEqRosenbrock v1.4.0
⌃ [2d112036] OrdinaryDiffEqSDIRK v1.2.0
⌃ [669c94d9] OrdinaryDiffEqSSPRK v1.2.0
⌃ [e3e12d00] OrdinaryDiffEqStabilizedIRK v1.2.0
[358294b1] OrdinaryDiffEqStabilizedRK v1.1.0
⌃ [fa646aed] OrdinaryDiffEqSymplecticRK v1.1.0
[b1df2697] OrdinaryDiffEqTsit5 v1.1.0
[79d7bb75] OrdinaryDiffEqVerner v1.1.1
[90014a1f] PDMats v0.11.32
[65ce6f38] PackageExtensionCompat v1.0.2
[65888b18] ParameterizedFunctions v5.17.2
[d96e819e] Parameters v0.12.3
[69de0a69] Parsers v2.8.1
[06bb1623] PenaltyFunctions v0.3.0
[b98c9c47] Pipe v1.3.0
[ccf2f8ad] PlotThemes v3.3.0
[995b91a9] PlotUtils v1.4.3
⌃ [91a5bcdd] Plots v1.40.9
[e409e4f3] PoissonRandom v0.4.4
[f517fe37] Polyester v0.7.16
[1d0040c9] PolyesterWeave v0.2.2
[85a6dd25] PositiveFactorizations v0.2.4
⌃ [d236fae5] PreallocationTools v0.4.24
⌅ [aea7be01] PrecompileTools v1.2.1
[21216c6a] Preferences v1.4.3
⌃ [27ebfcd6] Primes v0.5.6
[33c8b6b6] ProgressLogging v0.1.4
[92933f4c] ProgressMeter v1.10.2
[43287f4e] PtrArrays v1.3.0
⌃ [1fd47b50] QuadGK v2.11.1
[74087812] Random123 v1.7.0
[e6cf234a] RandomNumbers v1.6.0
[3cdcf5f2] RecipesBase v1.3.4
[01d81517] RecipesPipeline v0.6.12
⌃ [731186ca] RecursiveArrayTools v3.27.4
[f2c3362d] RecursiveFactorization v0.2.23
[189a3867] Reexport v1.2.2
[05181044] RelocatableFolders v1.0.1
⌃ [ae029012] Requires v1.3.0
[ae5879a3] ResettableStacks v1.1.1
[79098fc4] Rmath v0.8.0
[7e49a35a] RuntimeGeneratedFunctions v0.5.13
[9dfe8606] SCCNonlinearSolve v1.0.0
[94e857df] SIMDTypes v0.1.0
[476501e8] SLEEFPirates v0.6.43
⌃ [0bca4576] SciMLBase v2.72.1
[31c91b34] SciMLBenchmarks v0.1.3
[19f34311] SciMLJacobianOperators v0.1.1
⌃ [c0aeaf25] SciMLOperators v0.3.12
⌃ [53ae85a6] SciMLStructures v1.6.1
[6c6a2e73] Scratch v1.2.1
⌃ [efcf1570] Setfield v1.1.1
[992d4aef] Showoff v1.0.3
[777ac1f9] SimpleBufferStream v1.2.0
⌃ [727e6d20] SimpleNonlinearSolve v2.1.0
[699a6c99] SimpleTraits v0.9.4
[ce78b400] SimpleUnPack v1.1.0
[b85f4697] SoftGlobalScope v1.1.0
[a2af1166] SortingAlgorithms v1.2.1
⌃ [9f842d2f] SparseConnectivityTracer v0.6.10
⌃ [47a9eef4] SparseDiffTools v2.23.1
⌃ [0a514795] SparseMatrixColorings v0.4.12
[e56a9233] Sparspak v0.3.9
[d4ead438] SpatialIndexing v0.1.6
[276daf66] SpecialFunctions v2.5.0
[860ef19b] StableRNGs v1.0.2
⌃ [aedffcd0] Static v1.1.1
[0d7ed370] StaticArrayInterface v1.8.0
⌃ [90137ffa] StaticArrays v1.9.10
[1e83bf80] StaticArraysCore v1.4.3
[82ae8749] StatsAPI v1.7.0
[2913bbd2] StatsBase v0.34.4
[4c63d2b9] StatsFuns v1.3.2
[7792a7ef] StrideArraysCore v0.5.7
[69024149] StringEncodings v0.3.7
⌃ [2efcf032] SymbolicIndexingInterface v0.3.37
[19f23fe9] SymbolicLimits v0.2.2
⌃ [d1185830] SymbolicUtils v3.11.0
⌃ [0c5d862f] Symbolics v6.25.0
[3783bdb8] TableTraits v1.0.1
[bd369af6] Tables v1.12.0
[62fd8b95] TensorCore v0.1.1
[8ea1fca8] TermInterface v2.0.0
[5d786b92] TerminalLoggers v0.1.7
[1c621080] TestItems v1.0.0
[8290d209] ThreadingUtilities v0.5.2
⌃ [a759f4b9] TimerOutputs v0.5.26
[0796e94c] Tokenize v0.5.29
[3bb67fe8] TranscodingStreams v0.11.3
[d5829a12] TriangularSolve v0.2.1
[410a4b4d] Tricks v0.1.10
[781d530d] TruncatedStacktraces v1.4.0
[5c2747f8] URIs v1.5.1
[3a884ed6] UnPack v1.0.2
[1cfade01] UnicodeFun v0.4.1
[1986cc42] Unitful v1.22.0
[45397f5d] UnitfulLatexify v1.6.4
[a7c27f48] Unityper v0.1.6
[41fe7b60] Unzip v0.2.0
[3d5dd08c] VectorizationBase v0.21.71
[81def892] VersionParsing v1.3.0
[19fa3120] VertexSafeGraphs v0.2.0
[897b6980] WeakValueDicts v0.1.0
[44d3d7a6] Weave v0.10.12
⌃ [ddb6d928] YAML v0.4.12
[c2297ded] ZMQ v1.4.0
⌃ [6e34b625] Bzip2_jll v1.0.8+4
⌃ [83423d85] Cairo_jll v1.18.2+1
[ee1fde0b] Dbus_jll v1.14.10+0
[cd4c43a9] Dierckx_jll v0.2.0+0
[2702e6a9] EpollShim_jll v0.0.20230411+1
⌃ [2e619515] Expat_jll v2.6.4+3
⌅ [b22a6f82] FFMPEG_jll v4.4.4+1
[a3f928ae] Fontconfig_jll v2.15.0+0
[d7e528f0] FreeType2_jll v2.13.3+1
[559328eb] FriBidi_jll v1.0.16+0
[0656b61e] GLFW_jll v3.4.0+2
⌅ [d2c73de3] GR_jll v0.73.12+0
[78b55507] Gettext_jll v0.21.0+0
⌃ [f8c6e375] Git_jll v2.47.1+0
⌃ [7746bdde] Glib_jll v2.82.4+0
[3b182d85] Graphite2_jll v1.3.14+1
[2e76f6c2] HarfBuzz_jll v8.5.0+0
[1d5cc7b8] IntelOpenMP_jll v2025.0.4+0
[aacddb02] JpegTurbo_jll v3.1.1+0
[c1c5ebd0] LAME_jll v3.100.2+0
[88015f11] LERC_jll v4.0.1+0
[1d63c593] LLVMOpenMP_jll v18.1.7+0
[dd4b983a] LZO_jll v2.10.3+0
[81d17ec3] L_BFGS_B_jll v3.0.1+0
⌅ [e9f186c6] Libffi_jll v3.2.2+2
[d4300ac3] Libgcrypt_jll v1.11.0+0
[7e76a0d4] Libglvnd_jll v1.7.0+0
[7add5ba3] Libgpg_error_jll v1.51.1+0
[94ce4f54] Libiconv_jll v1.18.0+0
[4b2f31a3] Libmount_jll v2.40.3+0
[89763e89] Libtiff_jll v4.7.1+0
[38a345b3] Libuuid_jll v2.40.3+0
[856f044c] MKL_jll v2025.0.1+1
⌃ [079eb43e] NLopt_jll v2.9.0+0
[e7412a2a] Ogg_jll v1.3.5+1
⌃ [458c3c95] OpenSSL_jll v3.0.15+3
[efe28fd5] OpenSpecFun_jll v0.5.6+0
[91d4177d] Opus_jll v1.3.3+0
⌃ [36c8627f] Pango_jll v1.55.5+0
⌅ [30392449] Pixman_jll v0.43.4+0
⌅ [c0090381] Qt6Base_jll v6.7.1+1
⌅ [629bc702] Qt6Declarative_jll v6.7.1+2
⌅ [ce943373] Qt6ShaderTools_jll v6.7.1+1
⌃ [e99dba38] Qt6Wayland_jll v6.7.1+1
[f50d1b31] Rmath_jll v0.5.1+0
[a44049a8] Vulkan_Loader_jll v1.3.243+0
[a2964d1f] Wayland_jll v1.21.0+2
[2381bf8a] Wayland_protocols_jll v1.36.0+0
⌃ [02c8fc9c] XML2_jll v2.13.5+0
[aed1982a] XSLT_jll v1.1.42+0
[ffd25f8a] XZ_jll v5.6.4+1
[f67eecfb] Xorg_libICE_jll v1.1.1+0
[c834827a] Xorg_libSM_jll v1.2.4+0
[4f6342f7] Xorg_libX11_jll v1.8.6+3
[0c0b7dd1] Xorg_libXau_jll v1.0.12+0
[935fb764] Xorg_libXcursor_jll v1.2.3+0
[a3789734] Xorg_libXdmcp_jll v1.1.5+0
[1082639a] Xorg_libXext_jll v1.3.6+3
[d091e8ba] Xorg_libXfixes_jll v6.0.0+0
[a51aa0fd] Xorg_libXi_jll v1.8.2+0
[d1454406] Xorg_libXinerama_jll v1.1.5+0
[ec84b674] Xorg_libXrandr_jll v1.5.4+0
[ea2f1a96] Xorg_libXrender_jll v0.9.11+1
[14d82f49] Xorg_libpthread_stubs_jll v0.1.2+0
[c7cfdc94] Xorg_libxcb_jll v1.17.0+3
[cc61e674] Xorg_libxkbfile_jll v1.1.2+1
[e920d4aa] Xorg_xcb_util_cursor_jll v0.1.4+0
[12413925] Xorg_xcb_util_image_jll v0.4.0+1
[2def613f] Xorg_xcb_util_jll v0.4.0+1
[975044d2] Xorg_xcb_util_keysyms_jll v0.4.0+1
[0d47668e] Xorg_xcb_util_renderutil_jll v0.3.9+1
[c22f9ab0] Xorg_xcb_util_wm_jll v0.4.1+1
[35661453] Xorg_xkbcomp_jll v1.4.6+1
[33bec58e] Xorg_xkeyboard_config_jll v2.39.0+0
[c5fb5394] Xorg_xtrans_jll v1.5.1+0
⌃ [8f1865be] ZeroMQ_jll v4.3.5+3
⌃ [3161d3a3] Zstd_jll v1.5.7+0
[35ca27e7] eudev_jll v3.2.9+0
[214eeab7] fzf_jll v0.56.3+0
[1a1c6b14] gperf_jll v3.1.1+1
[a4ae2306] libaom_jll v3.11.0+0
[0ac62f75] libass_jll v0.15.2+0
[1183f4f0] libdecor_jll v0.2.2+0
[2db6ffa8] libevdev_jll v1.11.0+0
[f638f0a6] libfdk_aac_jll v2.0.3+0
[36db933b] libinput_jll v1.18.0+0
⌃ [b53b4c65] libpng_jll v1.6.45+1
⌃ [a9144af2] libsodium_jll v1.0.20+3
[f27f6e37] libvorbis_jll v1.3.7+2
[009596ad] mtdev_jll v1.1.6+0
⌃ [1317d2d5] oneTBB_jll v2021.12.0+0
⌅ [1270edf5] x264_jll v2021.5.5+0
⌅ [dfaa095f] x265_jll v3.5.0+0
[d8fb68d0] xkbcommon_jll v1.4.1+2
[0dad84c5] ArgTools v1.1.1
[56f22d72] Artifacts
[2a0f44e3] Base64
[ade2ca70] Dates
[8ba89e20] Distributed
[f43a241f] Downloads v1.6.0
[7b1f6079] FileWatching
[9fa8497b] Future
[b77e0a4c] InteractiveUtils
[4af54fe1] LazyArtifacts
[b27032c2] LibCURL v0.6.4
[76f85450] LibGit2
[8f399da3] Libdl
[37e2e46d] LinearAlgebra
[56ddb016] Logging
[d6f4376e] Markdown
[a63ad114] Mmap
[ca575930] NetworkOptions v1.2.0
[44cfe95a] Pkg v1.10.0
[de0858da] Printf
[9abbd945] Profile
[3fa0cd96] REPL
[9a3f8284] Random
[ea8e919c] SHA v0.7.0
[9e88b42a] Serialization
[1a1011a3] SharedArrays
[6462fe0b] Sockets
[2f01184e] SparseArrays v1.10.0
[10745b16] Statistics v1.10.0
[4607b0f0] SuiteSparse
[fa267f1f] TOML v1.0.3
[a4e569a6] Tar v1.10.0
[8dfed614] Test
[cf7118a7] UUIDs
[4ec0a83e] Unicode
[e66e0078] CompilerSupportLibraries_jll v1.1.1+0
[deac9b47] LibCURL_jll v8.4.0+0
[e37daf67] LibGit2_jll v1.6.4+0
[29816b5a] LibSSH2_jll v1.11.0+1
[c8ffd9c3] MbedTLS_jll v2.28.2+1
[14a3606d] MozillaCACerts_jll v2023.1.10
[4536629a] OpenBLAS_jll v0.3.23+4
[05823500] OpenLibm_jll v0.8.1+2
[efcefdf7] PCRE2_jll v10.42.0+1
[bea87d4a] SuiteSparse_jll v7.2.1+1
[83775a58] Zlib_jll v1.2.13+1
[8e850b90] libblastrampoline_jll v5.11.0+0
[8e850ede] nghttp2_jll v1.52.0+1
[3f19e933] p7zip_jll v17.4.0+2
Info Packages marked with ⌃ and ⌅ have new versions available. Those with ⌃ may be upgradable, but those with ⌅ are restricted by compatibility constraints from upgrading. To see why use `status --outdated -m`
Warning The project dependencies or compat requirements have changed since the manifest was last resolved. It is recommended to `Pkg.resolve()` or consider `Pkg.update()` if necessary.