Expectation of Process Noise
SciMLExpectations.jl is able to calculate the average trajectory of a stochastic differential equation. This done by representing the Wiener process using the Kosambi–Karhunen–Loève theorem.
using SciMLExpectations
using Cuba
using StochasticDiffEq
using DiffEqNoiseProcess
using Distributions
f(du, u, p, t) = (du .= u)
g(du, u, p, t) = (du .= u)
u0 = collect(1:4)
W = WienerProcess(0.0, 0.0, 0.0)
prob = SDEProblem(f, g, u0, (0.0, 1.0), noise = W)
sm = ProcessNoiseSystemMap(prob, 8, LambaEM(), abstol = 1e-3, reltol = 1e-3)
cov(x, u, p) = x, p
observed(sol, p) = sol[:, end]
exprob = ExpectationProblem(sm, observed, cov)
sol1 = solve(exprob, Koopman(), ireltol = 1e-3, iabstol = 1e-3, batch = 64,
quadalg = CubaDivonne())
sol1.u
4-element Vector{Float64}:
4.371665736791912
8.743331473583824
13.114997210375737
17.48666294716765
sol2 = solve(exprob, MonteCarlo(1_000_000))
sol2.u
4-element Vector{Float64}:
4.375258438269503
8.750516876539006
13.125775314808509
17.501033753078012
In theory, any numerical integration method from Integrals.jl is supported, but in practice many of the techniques struggle with correctly calculating the expected value. We got the best results with the Divonne algorithm from Cuba.jl.