home
Home
Modeling Languages
    ModelingToolkitCatalystNBodySimulatorParameterizedFunctions
Model Libraries and Importers
    ModelingToolkitStandardLibraryModelingToolkitNeuralNetsDiffEqCallbacksFiniteStateProjectionCellMLToolkitSBMLToolkitBaseModelicaReactionNetworkImporters
Symbolic Tools
    ModelOrderReductionSymbolicsSymbolicUtils
Array Libraries
    RecursiveArrayToolsComponentArraysLabelledArraysMultiScaleArrays
Equation Solvers
    LinearSolveNonlinearSolveDifferentialEquationsIntegralsDifferenceEquationsOptimizationJumpProcessesLineSearch
Inverse Problems / Estimation
    SciMLSensitivityDiffEqParamEstimDiffEqBayes
PDE Solvers
    MethodOfLinesNeuralPDENeuralOperatorsFEniCSHighDimPDEDiffEqOperators
Advanced Solver APIs
    OrdinaryDiffEqBoundaryValueDiffEqDiffEqGPU
Parameter Analysis
    EasyModelAnalysisGlobalSensitivityStructuralIdentifiability
Third-Party Parameter Analysis
    BifurcationKit
Uncertainty Quantification
    PolyChaosSciMLExpectations
Function Approximation
    SurrogatesReservoirComputing
Implicit Layer Deep Learning
    DiffEqFluxDeepEquilibriumNetworks
Symbolic Learning
    DataDrivenDiffEqSymbolicNumericIntegration
Third-Party Differentiation Tooling
    SparseDiffToolsFiniteDiff
Numerical Utilities
    ExponentialUtilitiesDiffEqNoiseProcessPreallocationToolsEllipsisNotationDataInterpolationsNDInterpolationsPoissonRandomQuasiMonteCarloRuntimeGeneratedFunctionsMuladdMacroFindFirstFunctionsSparseDiffTools
High-Level Interfaces
    SciMLBaseSciMLStructuresADTypesSymbolicIndexingInterfaceTermInterfaceSciMLOperatorsSurrogatesBaseCommonSolve
Third-Party Interfaces
    ArrayInterfaceStaticArrayInterface
Developer Documentation
    SciMLStyleColPracDiffEq Developer Documentation
Extra Resources
    SciMLWorkshopExtended SciML TutorialsThe SciML BenchmarksModelingToolkitCourse
Commercial Support
    JuliaHub logo - contact sales today!

    JuliaHub offers commercial support for ModelingToolkit and the SciML ecosystem. Contact us today to discuss your needs!
Products built with SciML
  • JuliaSim
  • Pumas
  • Cedar EDA
  • Neuroblox
  • Planting Space
    /
    SciMLExpectations.jl logo
    SciMLExpectations.jl
    • Home
    • Tutorials
      • An Introduction to Expectations via SciMLExpectations.jl
      • Optimization Under Uncertainty
      • GPU-Accelerated Data-Driven Bayesian Uncertainty Quantification with Koopman Operators
      • Expectation of Process Noise
    • Manual
      • ExpectationProblem
      • Solving Expectation Problems
      • Expectation Algorithms
    Version
    • Manual
    • Expectation Algorithms
    • Expectation Algorithms
    GitHub

    Expectation Algorithms

    SciMLExpectations.MonteCarlo — Type
    MonteCarlo(trajectories::Int)
    source
    SciMLExpectations.Koopman — Type
    Koopman()
    source
    « Solving Expectation Problems

    Powered by Documenter.jl and the Julia Programming Language.

    Settings


    This document was generated with Documenter.jl version 1.2.1 on Friday 23 February 2024. Using Julia version 1.10.1.