Demonstration of Operator Algebras and Kron

Let M, D, F be matrix-based, diagonal-matrix-based, and function-based SciMLOperators respectively. Here are some examples of composing operators in order to build more complex objects and using their operations.

using SciMLOperators, LinearAlgebra
N = 4
function f(v, u, p, t)
    u .* v
end
function f(w, v, u, p, t)
    w .= u .* v
end

u = rand(4)
p = nothing # parameter struct
t = 0.0     # time

M = MatrixOperator(rand(N, N))
D = DiagonalOperator(rand(N))
F = FunctionOperator(f, zeros(N), zeros(N); u, p, t)
FunctionOperator(4 × 4)

Then, the following codes just work.

L1 = 2M + 3F + LinearAlgebra.I + rand(N, N)
L2 = D * F * M'
L3 = kron(M, D, F)
L4 = lu(M) \ D
L5 = [M; D]' * [M F; F D] * [F; D]
((((MatrixOperator(4 × 4) * MatrixOperator(4 × 4)) + (DiagonalOperator(4 × 4) * FunctionOperator(4 × 4))) * FunctionOperator(4 × 4)) + (((MatrixOperator(4 × 4) * FunctionOperator(4 × 4)) + (DiagonalOperator(4 × 4) * DiagonalOperator(4 × 4))) * DiagonalOperator(4 × 4)))

Each L# can be applied to AbstractVectors of appropriate sizes:

v = rand(N)
w = L1(v, u, p, t) # == L1 * v

v_kron = rand(N^3)
w_kron = L3(v_kron, u, p, t) # == L3 * v_kron
64-element reshape(transpose(::Matrix{Float64}), 64) with eltype Float64:
 0.22702389531371378
 0.14701112466151442
 0.13087346069078068
 0.14795619479865002
 1.641302314155943
 0.4561882431134338
 0.876774746040292
 0.6020224717124653
 0.8748834321894968
 0.5999720279273861
 ⋮
 0.7818974925309978
 0.8158414332456584
 0.46563764682713626
 0.3655256933428017
 0.4302113058080632
 1.0789832897499392
 0.810955691331304
 1.0910658331323377
 0.8711455283455637

For mutating operator evaluations, call cache_operator to generate an in-place cache, so the operation is nonallocating.

α, β = rand(2)

# allocate cache
L2 = cache_operator(L2, u)
L4 = cache_operator(L4, u)

# allocation-free evaluation
L2(w, v, u, p, t) # == mul!(w, L2, v)
L4(w, v, u, p, t, α, β) # == mul!(w, L4, v, α, β)
4-element Vector{Float64}:
 -0.5063006728039758
  0.9831319373110798
  0.09700052913884691
  0.8371494943501195