Demonstration of Operator Algebras and Kron
Let M, D, F be matrix-based, diagonal-matrix-based, and function-based SciMLOperators respectively. Here are some examples of composing operators in order to build more complex objects and using their operations.
using SciMLOperators, LinearAlgebra
N = 4
function f(v, u, p, t)
    u .* v
end
function f(w, v, u, p, t)
    w .= u .* v
end
u = rand(4)
p = nothing # parameter struct
t = 0.0     # time
M = MatrixOperator(rand(N, N))
D = DiagonalOperator(rand(N))
F = FunctionOperator(f, zeros(N), zeros(N); u, p, t)FunctionOperator(4 × 4)Then, the following codes just work.
L1 = 2M + 3F + LinearAlgebra.I + rand(N, N)
L2 = D * F * M'
L3 = kron(M, D, F)
L4 = lu(M) \ D
L5 = [M; D]' * [M F; F D] * [F; D]((((MatrixOperator(4 × 4) * MatrixOperator(4 × 4)) + (DiagonalOperator(4 × 4) * FunctionOperator(4 × 4))) * FunctionOperator(4 × 4)) + (((MatrixOperator(4 × 4) * FunctionOperator(4 × 4)) + (DiagonalOperator(4 × 4) * DiagonalOperator(4 × 4))) * DiagonalOperator(4 × 4)))Each L# can be applied to AbstractVectors of appropriate sizes:
v = rand(N)
w = L1(v, u, p, t) # == L1 * v
v_kron = rand(N^3)
w_kron = L3(v_kron, u, p, t) # == L3 * v_kron64-element reshape(transpose(::Matrix{Float64}), 64) with eltype Float64:
 0.5108188730641806
 0.407143752916836
 0.044192140718123926
 0.20980983240764475
 0.27901115311752556
 0.649900674305328
 0.07103658548850776
 0.14025885067414867
 0.46914469465448033
 0.4586573439866114
 ⋮
 0.08252622065630312
 0.29883350441462303
 0.30051766573515987
 0.04734427979770174
 0.08579073814606088
 0.14166520180815023
 0.06244924545172059
 0.016675736923087613
 0.06251445583165324For mutating operator evaluations, call cache_operator to generate an in-place cache, so the operation is nonallocating.
α, β = rand(2)
# allocate cache
L2 = cache_operator(L2, u)
L4 = cache_operator(L4, u)
# allocation-free evaluation
L2(w, v, u, p, t) # == mul!(w, L2, v)
L4(w, v, u, p, t, α, β) # == mul!(w, L4, v, α, β)4-element Vector{Float64}:
  1.544593233069135
  0.23112585837626537
  0.2293930119816221
 -0.6630237552224609