Delay Differential Equations
Other differential equation problem types from DifferentialEquations.jl are supported. For example, we can build a layer with a delay differential equation like:
using OrdinaryDiffEq, Optimization, SciMLSensitivity, OptimizationPolyalgorithms,
DelayDiffEq
# Define the same LV equation, but including a delay parameter
function delay_lotka_volterra!(du, u, h, p, t)
x, y = u
α, β, δ, γ = p
du[1] = dx = (α - β * y) * h(p, t - 0.1)[1]
du[2] = dy = (δ * x - γ) * y
end
# Initial parameters
p = [2.2, 1.0, 2.0, 0.4]
# Define a vector containing delays for each variable (although only the first
# one is used)
h(p, t) = ones(eltype(p), 2)
# Initial conditions
u0 = [1.0, 1.0]
# Define the problem as a delay differential equation
prob_dde = DDEProblem(delay_lotka_volterra!, u0, h, (0.0, 10.0),
constant_lags = [0.1])
function predict_dde(p)
return Array(solve(prob_dde, MethodOfSteps(Tsit5()),
u0 = u0, p = p, saveat = 0.1, sensealg = ReverseDiffAdjoint()))
end
loss_dde(p) = sum(abs2, x - 1 for x in predict_dde(p))
using Plots
callback = function (state, l; doplot = false)
display(loss_dde(state.u))
doplot &&
display(plot(
solve(remake(prob_dde, p = state.u), MethodOfSteps(Tsit5()), saveat = 0.1),
ylim = (0, 6)))
return false
end
adtype = Optimization.AutoZygote()
optf = Optimization.OptimizationFunction((x, p) -> loss_dde(x), adtype)
optprob = Optimization.OptimizationProblem(optf, p)
result_dde = Optimization.solve(optprob, PolyOpt(), maxiters = 300, callback = callback)
retcode: Success
u: 4-element Vector{Float64}:
1.5247375542690187
1.5247375542644221
0.7311657359742096
0.7311657359760502
Notice that we chose sensealg = ReverseDiffAdjoint()
to utilize the ReverseDiff.jl reverse-mode to handle the delay differential equation.
We define a callback to display the solution at the current parameters for each step of the training:
using Plots
callback = function (state, l; doplot = false)
display(loss_dde(state.u))
doplot &&
display(plot(
solve(remake(prob_dde, p = state.u), MethodOfSteps(Tsit5()), saveat = 0.1),
ylim = (0, 6)))
return false
end
#8 (generic function with 1 method)
We use Optimization.solve
to optimize the parameters for our loss function:
adtype = Optimization.AutoZygote()
optf = Optimization.OptimizationFunction((x, p) -> loss_dde(x), adtype)
optprob = Optimization.OptimizationProblem(optf, p)
result_dde = Optimization.solve(optprob, PolyOpt(), callback = callback)
retcode: Success
u: 4-element Vector{Float64}:
1.5247375542690187
1.5247375542644221
0.7311657359742096
0.7311657359760502