Neural Second Order Ordinary Differential Equation

The neural ODE focuses and finding a neural network such that:

\[u^\prime = NN(u)\]

However, often in physics-based modeling, the key object is not the velocity but the acceleration: knowing the acceleration tells you the force field and thus the generating process for the dynamical system. Thus what we want to do is find the force, i.e.:

\[u^{\prime\prime} = NN(u)\]

(Note that in order to be the acceleration, we should divide the output of the neural network by the mass!)

An example of training a neural network on a second order ODE is as follows:

using SciMLSensitivity
using OrdinaryDiffEq, Lux, Optimization, OptimizationOptimisers, RecursiveArrayTools,
    Random, ComponentArrays

u0 = Float32[0.0; 2.0]
du0 = Float32[0.0; 0.0]
tspan = (0.0f0, 1.0f0)
t = range(tspan[1], tspan[2], length = 20)

model = Chain(Dense(2, 50, tanh), Dense(50, 2))
ps, st = Lux.setup(Random.default_rng(), model)
ps = ComponentArray(ps)
model = Lux.Experimental.StatefulLuxLayer(model, ps, st)

ff(du, u, p, t) = model(u, p)
prob = SecondOrderODEProblem{false}(ff, du0, u0, tspan, ps)

function predict(p)
    Array(solve(prob, Tsit5(), p = p, saveat = t))
end

correct_pos = Float32.(transpose(hcat(collect(0:0.05:1)[2:end], collect(2:-0.05:1)[2:end])))

function loss_n_ode(p)
    pred = predict(p)
    sum(abs2, correct_pos .- pred[1:2, :]), pred
end

l1 = loss_n_ode(ps)

callback = function (p, l, pred)
    println(l)
    l < 0.01
end

adtype = Optimization.AutoZygote()
optf = Optimization.OptimizationFunction((x, p) -> loss_n_ode(x), adtype)
optprob = Optimization.OptimizationProblem(optf, ps)

res = Optimization.solve(optprob, Adam(0.01); callback = callback, maxiters = 1000)
retcode: Default
u: ComponentVector{Float32}(layer_1 = (weight = Float32[-0.3406804 -0.24918175; 0.86233246 -0.61030006; … ; -3.4242008 -0.504868; -0.5782375 -0.20773499], bias = Float32[-0.39969575; -0.5781172; … ; 0.5810725; -0.13796377;;]), layer_2 = (weight = Float32[-0.043873433 0.09809223 … -0.016637769 -0.44568184; -1.1734346 -0.51823014 … 0.50299215 -0.39961827], bias = Float32[0.158288; 0.31990027;;]))