Global Identifiability Tools
StructuralIdentifiability.RationalFunctionField
StructuralIdentifiability.field_contains
StructuralIdentifiability.get_degree_and_coeffsize
StructuralIdentifiability.RationalFunctionField
— TypeRationalFunctionField
A subfield of the field of rational functions over the rationals.
Example
using Nemo
using StructuralIdentifiability: RationalFunctionField
R, (x, y, z) = QQ["x", "y", "z"]
# Constructs a subfield generated by x / y, y / z
rff = RationalFunctionField([x // y, y // z])
# Constructs a subfield generated by y / x, 1 / x, z / y
rff = RationalFunctionField([[x, y, R(1)], [y, z]])
StructuralIdentifiability.field_contains
— Functionfield_contains(field, ratfuncs, prob_threshold)
Checks whether given rational function field field
contains given rational functions ratfuncs
. The result is correct with probability at least prob_threshold
Inputs:
field
- a rational function fieldratfuncs
- a list of rational functionsprob_threshold
real number from (0, 1)
Output:
- a list
L[i]
of bools of lengthlength(rat_funcs)
such thatL[i]
is true iff the i-th function belongs tofield
StructuralIdentifiability.get_degree_and_coeffsize
— Functionget_degree_and_coeffsize(f)
for f
being a polynomial/rational function over rationals (QQ
) returns a tuple (degree, max_coef_size)