Elimination
StructuralIdentifiability.Bezout_matrixStructuralIdentifiability.Sylvester_matrixStructuralIdentifiability.chooseStructuralIdentifiability.eliminate_varStructuralIdentifiability.simplify_matrix
StructuralIdentifiability.Bezout_matrix — MethodBezout_matrix(f, g, var_elim)Compute the Bezout matrix of two polynomials f, g with respect to var_elim
Inputs:
f- first polynomialg- second polynomialvar_elim- variable, of which f and g are considered as polynomials
Output:
M::MatrixElem- The Bezout matrix
StructuralIdentifiability.Sylvester_matrix — MethodSylvester_matrix(f, g, var_elim)Compute the Sylvester matrix of two polynomials f, g with respect to var_elim Inputs:
f- first polynomialg- second polynomialvar_elim- variable, of which f and g are considered as polynomials
Output:
M::MatrixElem- The Sylvester matrix
StructuralIdentifiability.choose — Methodchoose(polys, generic_point_generator)Input:
polys- an array of distinct irreducible polynomials in the same ringgeneric_point_generator- a generic point generator as described above for one of polys
Output:
- the polynomial that vanishes at the
generic_point_generator
StructuralIdentifiability.eliminate_var — Methodeliminate_var(f, g, var_elim, generic_point_generator)Eliminate a variable from a pair of polynomials
Input:
fandg- polynomialsvar_elim- variable to be eliminatedgeneric_point_generator- a generic point generator object for the factor of the resultant offandgof interest
Output:
polynomial- the desired factor of the resultant offandg
StructuralIdentifiability.simplify_matrix — Methodsimplify_matrix(M)Eliminate GCD of entries of every row and column
Input:
M::MatrixElem- matrix to be simplified
Output:
M::MatrixElem- Simplified matrixextra_factors::Vector{AbstractAlgebra.MPolyRingElem}- array of GCDs eliminated fromM.