Global Identifiability Tools

StructuralIdentifiability.RationalFunctionFieldType
RationalFunctionField

A subfield of the field of rational functions over the rationals.

Example

using Nemo
using StructuralIdentifiability: RationalFunctionField

R, (x, y, z) = QQ["x", "y", "z"]

# Constructs a subfield generated by x / y, y / z
rff = RationalFunctionField([x // y, y // z])

# Constructs a subfield generated by y / x, 1 / x, z / y
rff = RationalFunctionField([[x, y, R(1)], [y, z]])
source
StructuralIdentifiability.field_containsFunction
field_contains(field, ratfuncs, prob_threshold)

Checks whether given rational function field field contains given rational functions ratfuncs. The result is correct with probability at least prob_threshold

Inputs:

  • field - a rational function field
  • ratfuncs - a list of rational functions
  • prob_threshold real number from (0, 1)

Output:

  • a list L[i] of bools of length length(rat_funcs) such that L[i] is true iff the i-th function belongs to field
source