Cantilever Beam Function

The Cantilever Beam function is defined as: $f(w,t) = \frac{4L^3}{Ewt}*\sqrt{ (\frac{Y}{t^2})^2 + (\frac{X}{w^2})^2 }$ With parameters L,E,X and Y given.

Let's import Surrogates and Plots:

using Surrogates
using SurrogatesPolyChaos
using Plots

Define the objective function:

function f(x)
    t = x[1]
    w = x[2]
    L = 100.0
    E = 2.770674127819261e7
    X = 530.8038576066307
    Y = 997.8714938733949
    return (4 * L^3) / (E * w * t) * sqrt((Y / t^2)^2 + (X / w^2)^2)
end
f (generic function with 1 method)

Let's plot it:

n = 100
lb = [1.0, 1.0]
ub = [8.0, 8.0]
xys = sample(n, lb, ub, SobolSample());
zs = f.(xys);
x, y = 0.0:8.0, 0.0:8.0
p1 = surface(x, y, (x1, x2) -> f((x1, x2)))
xs = [xy[1] for xy in xys]
ys = [xy[2] for xy in xys]
p2 = contour(x, y, (x1, x2) -> f((x1, x2)))
scatter!(xs, ys)
plot(p1, p2, title = "True function")
Example block output

Fitting different surrogates:

mypoly = PolynomialChaosSurrogate(xys, zs, lb, ub)
loba = LobachevskySurrogate(xys, zs, lb, ub)
rad = RadialBasis(xys, zs, lb, ub)
(::RadialBasis{Surrogates.var"#1#2", Int64, Vector{Tuple{Float64, Float64}}, Vector{Float64}, Vector{Float64}, Vector{Float64}, LinearAlgebra.Transpose{Float64, Vector{Float64}}, Float64, Bool}) (generic function with 1 method)

Plotting:

p1 = surface(x, y, (x, y) -> mypoly([x y]))
scatter!(xs, ys, zs, marker_z = zs)
p2 = contour(x, y, (x, y) -> mypoly([x y]))
scatter!(xs, ys, marker_z = zs)
plot(p1, p2, title = "Polynomial expansion")
Example block output
p1 = surface(x, y, (x, y) -> loba([x y]))
scatter!(xs, ys, zs, marker_z = zs)
p2 = contour(x, y, (x, y) -> loba([x y]))
scatter!(xs, ys, marker_z = zs)
plot(p1, p2, title = "Lobachevsky")
Example block output
p1 = surface(x, y, (x, y) -> rad([x y]))
scatter!(xs, ys, zs, marker_z = zs)
p2 = contour(x, y, (x, y) -> rad([x y]))
scatter!(xs, ys, marker_z = zs)
plot(p1, p2, title = "Inverse distance")
Example block output