API
SurrogatesBase.AbstractDeterministicSurrogate — Typeabstract type AbstractDeterministicSurrogate <: Function endAn abstract type for deterministic surrogates.
(s::AbstractDeterministicSurrogate)(xs)Subtypes of AbstractDeterministicSurrogate are callable with a Vector of points xs. The result is a Vector of evaluations of the surrogate at points xs, corresponding to approximations of the underlying function at points xs respectively.
Examples
julia> struct ZeroSurrogate <: AbstractDeterministicSurrogate end
julia> (::ZeroSurrogate)(xs) = 0
julia> s = ZeroSurrogate();
julia> s([4]) == 0
trueSurrogatesBase.AbstractStochasticSurrogate — Typeabstract type AbstractStochasticSurrogate endAn abstract type for stochastic surrogates.
See also finite_posterior.
SurrogatesBase.finite_posterior — Functionfinite_posterior(s::AbstractStochasticSurrogate, xs::AbstractVector)Return a posterior distribution at points xs.
An AbstractStochasticSurrogate might implement some or all of the following methods on the returned object:
mean(finite_posterior(s,xs))returns aVectorof posterior means atxsvar(finite_posterior(s,xs))returns aVectorof posterior variances atxsmean_and_var(finite_posterior(s,xs))returns aTupleconsisting of aVectorof posterior means and aVectorof posterior variances atxsrand(finite_posterior(s,xs))returns aVector, which is a sample from the joint
posterior at points xs
Use mean(finite_posterior(s, eachslice(X, dims = 2))) if X is a matrix.
SurrogatesBase.hyperparameters — FunctionSurrogatesBase.parameters — Functionparameters(s)Returns current values of parameters used in surrogate s.
SurrogatesBase.update! — Functionupdate!(s, new_xs::AbstractVector, new_ys::AbstractVector)Include data new_ys at points new_xs into the surrogate s, i.e., refit the surrogate s to incorporate new data points.
If the surrogate s is a deterministic surrogate, the new_ys correspond to function evaluations, if s is a stochastic surrogate, the new_ys are samples from a conditional probability distribution.
Use update!(s, eachslice(X, dims = 2), new_ys) if X is a matrix.
SurrogatesBase.update_hyperparameters! — Functionupdate_hyperparameters!(s, prior)Update the hyperparameters of the surrogate s by performing hyperparameter optimization using the information in prior. After changing hyperparameters of s, fit s to past data.
See also hyperparameters.