# Global Optimization via NLopt

The build_loss_objective function builds an objective function which is able to be used with MathOptInterface-associated solvers. This includes packages like IPOPT, NLopt, MOSEK, etc. Building off of the previous example, we can build a cost function for the single parameter optimization problem like:

function f(du,u,p,t)
dx = p*u - u*u
dy = -3*u + u*u
end

u0 = [1.0;1.0]
tspan = (0.0,10.0)
p = [1.5]
prob = ODEProblem(f,u0,tspan,p)
sol = solve(prob,Tsit5())

t = collect(range(0,stop=10,length=200))
randomized = VectorOfArray([(sol(t[i]) + .01randn(2)) for i in 1:length(t)])
data = convert(Array,randomized)

obj = build_loss_objective(prob,Tsit5(),L2Loss(t,data),maxiters=10000)

We can now use this obj as the objective function with MathProgBase solvers. For our example, we will use NLopt. To use the local derivative-free Constrained Optimization BY Linear Approximations algorithm, we can simply do:

using NLopt
opt = Opt(:LN_COBYLA, 1)
min_objective!(opt, obj)
(minf,minx,ret) = NLopt.optimize(opt,[1.3])

This finds a minimum at [1.49997]. For a modified evolutionary algorithm, we can use:

opt = Opt(:GN_ESCH, 1)
min_objective!(opt, obj)
lower_bounds!(opt,[0.0])
upper_bounds!(opt,[5.0])
xtol_rel!(opt,1e-3)
maxeval!(opt, 100000)
(minf,minx,ret) = NLopt.optimize(opt,[1.3])

We can even use things like the Improved Stochastic Ranking Evolution Strategy (and add constraints if needed). This is done via:

opt = Opt(:GN_ISRES, 1)
min_objective!(opt, obj.cost_function2)
lower_bounds!(opt,[-1.0])
upper_bounds!(opt,[5.0])
xtol_rel!(opt,1e-3)
maxeval!(opt, 100000)
(minf,minx,ret) = NLopt.optimize(opt,[0.2])

which is very robust to the initial condition. The fastest result comes from the following:

using NLopt
opt = Opt(:LN_BOBYQA, 1)
min_objective!(opt, obj)
(minf,minx,ret) = NLopt.optimize(opt,[1.3])

For more information, see the NLopt documentation for more details. And give IPOPT or MOSEK a try!