# PDEs with Dependent Variables on Heterogeneous Domains

A differential equation is said to have heterogeneous domains when its dependent variables depend on different independent variables:

$$$u(x) + w(x, v) = \frac{\partial w(x, v)}{\partial w}$$$

Here, we write an arbitrary heterogeneous system:

using NeuralPDE, Lux, ModelingToolkit, Optimization, OptimizationOptimJL
import ModelingToolkit: Interval

@parameters x y
@variables p(..) q(..) r(..) s(..)
Dx = Differential(x)
Dy = Differential(y)

# 2D PDE
eq  = p(x) + q(y) + Dx(r(x, y)) + Dy(s(y, x)) ~ 0

# Initial and boundary conditions
bcs = [p(1) ~ 0.f0, q(-1) ~ 0.0f0,
r(x, -1) ~ 0.f0, r(1, y) ~ 0.0f0,
s(y, 1) ~ 0.0f0, s(-1, x) ~ 0.0f0]

# Space and time domains
domains = [x ∈ Interval(0.0, 1.0),
y ∈ Interval(0.0, 1.0)]

numhid = 3
chains = [[Lux.Chain(Dense(1, numhid, Lux.σ), Dense(numhid, numhid, Lux.σ), Dense(numhid, 1)) for i in 1:2];
[Lux.Chain(Dense(2, numhid, Lux.σ), Dense(numhid, numhid, Lux.σ), Dense(numhid, 1)) for i in 1:2]]
res = Optimization.solve(prob, BFGS(); callback = callback, maxiters=100)