Fokker-Planck Equation
Let's consider the Fokker-Planck equation:
\[- \frac{∂}{∂x} \left [ \left( \alpha x - \beta x^3\right) p(x)\right ] + \frac{\sigma^2}{2} \frac{∂^2}{∂x^2} p(x) = 0 \, ,\]
which must satisfy the normalization condition:
\[\Delta t \, p(x) = 1\]
with the boundary conditions:
\[p(-2.2) = p(2.2) = 0\]
with Physics-Informed Neural Networks.
using NeuralPDE, Flux, ModelingToolkit, Optimization, GalacticOptimJL, DiffEqFlux
import ModelingToolkit: Interval, infimum, supremum
# the example is taken from this article https://arxiv.org/abs/1910.10503
@parameters x
@variables p(..)
Dx = Differential(x)
Dxx = Differential(x)^2
α = 0.3
β = 0.5
_σ = 0.5
x_0 = -2.2
x_end = 2.2
# Discretization
dx = 0.01
eq = Dx((α*x - β*x^3)*p(x)) ~ (_σ^2/2)*Dxx(p(x))
# Initial and boundary conditions
bcs = [p(x_0) ~ 0. ,p(x_end) ~ 0.]
# Space and time domains
domains = [x ∈ Interval(x_0,x_end)]
# Neural network
inn = 18
chain = FastChain(FastDense(1,inn,Flux.σ),
FastDense(inn,inn,Flux.σ),
FastDense(inn,inn,Flux.σ),
FastDense(inn,1))
initθ = Float64.(DiffEqFlux.initial_params(chain))
lb = [x_0]
ub = [x_end]
function norm_loss_function(phi,θ,p)
function inner_f(x,θ)
dx*phi(x, θ) .- 1
end
prob = QuadratureProblem(inner_f, lb, ub, θ)
norm2 = solve(prob, HCubatureJL(), reltol = 1e-8, abstol = 1e-8, maxiters =10);
abs(norm2[1])
end
discretization = PhysicsInformedNN(chain,
GridTraining(dx);
init_params = initθ,
additional_loss=norm_loss_function)
@named pde_system = PDESystem(eq,bcs,domains,[x],[p(x)])
prob = discretize(pde_system,discretization)
pde_inner_loss_functions = prob.f.f.loss_function.pde_loss_function.pde_loss_functions.contents
bcs_inner_loss_functions = prob.f.f.loss_function.bcs_loss_function.bc_loss_functions.contents
phi = discretization.phi
cb_ = function (p,l)
println("loss: ", l )
println("pde_losses: ", map(l_ -> l_(p), pde_inner_loss_functions))
println("bcs_losses: ", map(l_ -> l_(p), bcs_inner_loss_functions))
println("additional_loss: ", norm_loss_function(phi,p,nothing))
return false
end
res = Optimization.solve(prob,LBFGS(),callback = cb_,maxiters=400)
prob = remake(prob,u0=res.minimizer)
res = Optimization.solve(prob,BFGS(),callback = cb_,maxiters=2000)
And some analysis:
using Plots
C = 142.88418699042 #fitting param
analytic_sol_func(x) = C*exp((1/(2*_σ^2))*(2*α*x^2 - β*x^4))
xs = [infimum(d.domain):dx:supremum(d.domain) for d in domains][1]
u_real = [analytic_sol_func(x) for x in xs]
u_predict = [first(phi(x,res.minimizer)) for x in xs]
plot(xs ,u_real, label = "analytic")
plot!(xs ,u_predict, label = "predict")