Poisson Equation
In this example, we will solve a Poisson equation:
\[∂^2_x u(x, y) + ∂^2_y u(x, y) = - \sin(\pi x) \sin(\pi y) \, ,\]
with the boundary conditions:
\[\begin{align*} u(0, y) &= 0 \, ,\\ u(1, y) &= - \sin(\pi) \sin(\pi y) \, ,\\ u(x, 0) &= 0 \, ,\\ u(x, 1) &= - \sin(\pi x) \sin(\pi) \, , \end{align*}\]
on the space domain:
\[x \in [0, 1] \, , \ y \in [0, 1] \, ,\]
with grid discretization dx = 0.1
. We will use physics-informed neural networks.
Copy-Pastable Code
using NeuralPDE, Flux, ModelingToolkit, Optimization, GalacticOptimJL, DiffEqFlux
import ModelingToolkit: Interval, infimum, supremum
@parameters x y
@variables u(..)
Dxx = Differential(x)^2
Dyy = Differential(y)^2
# 2D PDE
eq = Dxx(u(x,y)) + Dyy(u(x,y)) ~ -sin(pi*x)*sin(pi*y)
# Boundary conditions
bcs = [u(0,y) ~ 0.0, u(1,y) ~ -sin(pi*1)*sin(pi*y),
u(x,0) ~ 0.0, u(x,1) ~ -sin(pi*x)*sin(pi*1)]
# Space and time domains
domains = [x ∈ Interval(0.0,1.0),
y ∈ Interval(0.0,1.0)]
# Neural network
dim = 2 # number of dimensions
chain = FastChain(FastDense(dim,16,Flux.σ),FastDense(16,16,Flux.σ),FastDense(16,1))
# Initial parameters of Neural network
initθ = Float64.(DiffEqFlux.initial_params(chain))
# Discretization
dx = 0.05
discretization = PhysicsInformedNN(chain,GridTraining(dx),init_params =initθ)
@named pde_system = PDESystem(eq,bcs,domains,[x,y],[u(x, y)])
prob = discretize(pde_system,discretization)
#Optimizer
opt = GalacticOptimJL.BFGS()
#Callback function
callback = function (p,l)
println("Current loss is: $l")
return false
end
res = Optimization.solve(prob, opt, callback = callback, maxiters=1000)
phi = discretization.phi
using Plots
xs,ys = [infimum(d.domain):dx/10:supremum(d.domain) for d in domains]
analytic_sol_func(x,y) = (sin(pi*x)*sin(pi*y))/(2pi^2)
u_predict = reshape([first(phi([x,y],res.minimizer)) for x in xs for y in ys],(length(xs),length(ys)))
u_real = reshape([analytic_sol_func(x,y) for x in xs for y in ys], (length(xs),length(ys)))
diff_u = abs.(u_predict .- u_real)
p1 = plot(xs, ys, u_real, linetype=:contourf,title = "analytic");
p2 = plot(xs, ys, u_predict, linetype=:contourf,title = "predict");
p3 = plot(xs, ys, diff_u,linetype=:contourf,title = "error");
plot(p1,p2,p3)
Detailed Description
The ModelingToolkit PDE interface for this example looks like this:
using NeuralPDE, Flux, ModelingToolkit, Optimization, GalacticOptimJL, DiffEqFlux
import ModelingToolkit: Interval, infimum, supremum
@parameters x y
@variables u(..)
@derivatives Dxx''~x
@derivatives Dyy''~y
# 2D PDE
eq = Dxx(u(x,y)) + Dyy(u(x,y)) ~ -sin(pi*x)*sin(pi*y)
# Boundary conditions
bcs = [u(0,y) ~ 0.0, u(1,y) ~ -sin(pi*1)*sin(pi*y),
u(x,0) ~ 0.0, u(x,1) ~ -sin(pi*x)*sin(pi*1)]
# Space and time domains
domains = [x ∈ Interval(0.0,1.0),
y ∈ Interval(0.0,1.0)]
Here, we define the neural network, where the input of NN equals the number of dimensions and output equals the number of equations in the system.
# Neural network
dim = 2 # number of dimensions
chain = FastChain(FastDense(dim,16,Flux.σ),FastDense(16,16,Flux.σ),FastDense(16,1))
Convert weights of neural network from Float32 to Float64 in order to all inner calculation will be with Float64.
# Initial parameters of Neural network
initθ = Float64.(DiffEqFlux.initial_params(chain))
Here, we build PhysicsInformedNN algorithm where dx
is the step of discretization, strategy
stores information for choosing a training strategy and init_params =initθ
initial parameters of neural network.
# Discretization
dx = 0.05
discretization = PhysicsInformedNN(chain, GridTraining(dx),init_params =initθ)
As described in the API docs, we now need to define the PDESystem
and create PINNs problem using the discretize
method.
@named pde_system = PDESystem(eq,bcs,domains,[x,y],[u(x, y)])
prob = discretize(pde_system,discretization)
Here, we define the callback function and the optimizer. And now we can solve the PDE using PINNs (with the number of epochs maxiters=1000
).
#Optimizer
opt = GalacticOptimJL.BFGS()
callback = function (p,l)
println("Current loss is: $l")
return false
end
res = Optimization.solve(prob, opt, callback = callback, maxiters=1000)
phi = discretization.phi
We can plot the predicted solution of the PDE and compare it with the analytical solution in order to plot the relative error.
xs,ys = [infimum(d.domain):dx/10:supremum(d.domain) for d in domains]
analytic_sol_func(x,y) = (sin(pi*x)*sin(pi*y))/(2pi^2)
u_predict = reshape([first(phi([x,y],res.minimizer)) for x in xs for y in ys],(length(xs),length(ys)))
u_real = reshape([analytic_sol_func(x,y) for x in xs for y in ys], (length(xs),length(ys)))
diff_u = abs.(u_predict .- u_real)
p1 = plot(xs, ys, u_real, linetype=:contourf,title = "analytic");
p2 = plot(xs, ys, u_predict, linetype=:contourf,title = "predict");
p3 = plot(xs, ys, diff_u,linetype=:contourf,title = "error");
plot(p1,p2,p3)