Data Iterators and Minibatching
This example uses the OptimizationOptimisers.jl package. See the Optimisers.jl page for details on the installation and usage.
using Flux, Optimization, OptimizationOptimisers, OrdinaryDiffEq, DiffEqSensitivity
function newtons_cooling(du, u, p, t)
temp = u[1]
k, temp_m = p
du[1] = dT = -k*(temp-temp_m)
end
function true_sol(du, u, p, t)
true_p = [log(2)/8.0, 100.0]
newtons_cooling(du, u, true_p, t)
end
ann = Chain(FastDense(1,8,tanh), FastDense(8,1,tanh))
pp,re = Flux.destructure(ann)
function dudt_(u,p,t)
re(p)(u) .* u
end
callback = function (p,l,pred;doplot=false) #callback function to observe training
display(l)
# plot current prediction against data
if doplot
pl = scatter(t,ode_data[1,:],label="data")
scatter!(pl,t,pred[1,:],label="prediction")
display(plot(pl))
end
return false
end
u0 = Float32[200.0]
datasize = 30
tspan = (0.0f0, 1.5f0)
t = range(tspan[1], tspan[2], length=datasize)
true_prob = ODEProblem(true_sol, u0, tspan)
ode_data = Array(solve(true_prob, Tsit5(), saveat=t))
prob = ODEProblem{false}(dudt_, u0, tspan, pp)
function predict_adjoint(fullp, time_batch)
Array(solve(prob, Tsit5(), p = fullp, saveat = time_batch))
end
function loss_adjoint(fullp, batch, time_batch)
pred = predict_adjoint(fullp,time_batch)
sum(abs2, batch .- pred), pred
end
k = 10
train_loader = Flux.Data.DataLoader((ode_data, t), batchsize = k)
numEpochs = 300
l1 = loss_adjoint(pp, train_loader.data[1], train_loader.data[2])[1]
optfun = OptimizationFunction((θ, p, batch, time_batch) -> loss_adjoint(θ, batch, time_batch), Optimization.AutoZygote())
optprob = OptimizationProblem(optfun, pp)
using IterTools: ncycle
res1 = Optimization.solve(optprob, Optimisers.ADAM(0.05), ncycle(train_loader, numEpochs), callback = callback)
@test 10res1.minimum < l1