Berger's Equation Physics-Informed Neural Network (PINN) Optimizer Benchmarks
Adapted from NeuralPDE: Automating Physics-Informed Neural Networks (PINNs) with Error Approximations. Uses the NeuralPDE.jl library from the SciML Scientific Machine Learning Open Source Organization for the implementation of physics-informed neural networks (PINNs) and other science-guided AI techniques.
Setup
using NeuralPDE, Flux, ModelingToolkit, GalacticOptim, Optim, DiffEqFlux
using Quadrature,Cubature,Cuba
using Plots
# Physical and numerical parameters (fixed)
nu = 0.07
nx = 10001 #101
x_max = 2.0 * pi
dx = x_max / (nx - 1.0)
nt = 2 #10
dt = dx * nu
t_max = dt * nt
# Analytic function
analytic_sol_func(t, x) = -2*nu*(-(-8*t + 2*x)*exp(-(-4*t + x)^2/(4*nu*(t + 1)))/
(4*nu*(t + 1)) - (-8*t + 2*x - 12.5663706143592)*
exp(-(-4*t + x - 6.28318530717959)^2/(4*nu*(t + 1)))/
(4*nu*(t + 1)))/(exp(-(-4*t + x - 6.28318530717959)^2/
(4*nu*(t + 1))) + exp(-(-4*t + x)^2/(4*nu*(t + 1)))) + 4
analytic_sol_func (generic function with 1 method)
function burgers(strategy, minimizer)
@parameters x t
@variables u(..)
Dt = Differential(t)
Dx = Differential(x)
Dxx = Differential(x)^2
eq = Dt(u(x, t)) + u(x, t) * Dx(u(x, t)) ~ nu * Dxx(u(x, t))
bcs = [u(x,0.0) ~ analytic_sol_func(x, 0.0),
u(0.0,t) ~ u(x_max,t)]
domains = [x ∈ IntervalDomain(0.0, x_max),
t ∈ IntervalDomain(0.0, t_max)]
chain = FastChain(FastDense(2,16,Flux.σ),FastDense(16,16,Flux.σ),FastDense(16,1))
discretization = PhysicsInformedNN(chain, strategy)
indvars = [x, t] #physically independent variables
depvars = [u] #dependent (target) variable
dim = length(domains)
losses = []
error = []
times = []
dx_err = 0.00005
error_strategy = GridTraining(dx_err)
initθ = Float64.(DiffEqFlux.initial_params(chain))
eltypeθ = eltype(initθ)
parameterless_type_θ = DiffEqBase.parameterless_type(initθ)
phi = NeuralPDE.get_phi(chain,parameterless_type_θ)
derivative = NeuralPDE.get_numeric_derivative()
_pde_loss_function = NeuralPDE.build_loss_function(eq,indvars,depvars,
phi,derivative,nothing,chain,initθ,error_strategy)
bc_indvars = NeuralPDE.get_variables(bcs,indvars,depvars)
_bc_loss_functions = [NeuralPDE.build_loss_function(bc,indvars,depvars,
phi,derivative,nothing,chain,initθ,error_strategy,
bc_indvars = bc_indvar) for (bc,bc_indvar) in zip(bcs,bc_indvars)]
train_sets = NeuralPDE.generate_training_sets(domains,dx_err,[eq],bcs,eltypeθ,indvars,depvars)
train_domain_set, train_bound_set = train_sets
pde_loss_function = NeuralPDE.get_loss_function(_pde_loss_function,
train_domain_set[1],eltypeθ,
parameterless_type_θ,error_strategy)
bc_loss_functions = [NeuralPDE.get_loss_function(loss,set,
eltypeθ, parameterless_type_θ,
error_strategy) for (loss, set) in zip(_bc_loss_functions,train_bound_set)]
loss_functions = [pde_loss_function; bc_loss_functions]
loss_function__ = θ -> sum(map(l->l(θ) ,loss_functions))
function loss_function_(θ,p)
return loss_function__(θ)
end
cb = function (p,l)
timeCounter = 0.0
deltaT_s = time_ns() #Start a clock when the callback begins, this will evaluate questo misurerà anche il calcolo degli uniform error
ctime = time_ns() - startTime - timeCounter #This variable is the time to use for the time benchmark plot
append!(times, ctime/10^9) #Conversion nanosec to seconds
append!(losses, l)
append!(error, loss_function__(p))
#println(length(losses), " Current loss is: ", l, " uniform error is, ", loss_function__(p))
timeCounter = timeCounter + time_ns() - deltaT_s #timeCounter sums all delays due to the callback functions of the previous iterations
return false
end
@named pde_system = PDESystem(eq, bcs, domains, indvars, depvars)
discretization = NeuralPDE.PhysicsInformedNN(chain, strategy, init_params =initθ)
prob = NeuralPDE.discretize(pde_system,discretization)
startTime = time_ns() #Fix initial time (t=0) before starting the training
if minimizer == "both"
res = GalacticOptim.solve(prob, ADAM(); cb = cb, maxiters=5)
prob = remake(prob,u0=res.minimizer)
res = GalacticOptim.solve(prob, BFGS(); cb = cb, maxiters=15)
else
res = GalacticOptim.solve(prob, minimizer; cb = cb, maxiters=500)
end
phi = discretization.phi
params = res.minimizer
return [error, params, times, losses]
end
burgers (generic function with 1 method)
Solve
# Settings:
#maxIters = [(0,0,0,0,0,0,20000),(300,300,300,300,300,300,300)] #iters
strategies = [NeuralPDE.QuadratureTraining()]
strategies_short_name = ["QuadratureTraining"]
minimizers = [ADAM(),
ADAM(0.000005),
ADAM(0.0005),
RMSProp(),
RMSProp(0.00005),
RMSProp(0.05),
BFGS(),
LBFGS()]
minimizers_short_name = ["ADAM",
"ADAM(0.000005)",
"ADAM(0.0005)",
"RMS",
"RMS(0.00005)",
"RMS(0.05)",
"BFGS",
"LBFGS"]
8-element Vector{String}:
"ADAM"
"ADAM(0.000005)"
"ADAM(0.0005)"
"RMS"
"RMS(0.00005)"
"RMS(0.05)"
"BFGS"
"LBFGS"
# Run models
error_res = Dict()
params_res = Dict()
times = Dict()
losses_res = Dict()
print("Starting run \n")
for min in 1:length(minimizers) # minimizer
for strat in 1:length(strategies) # strategy
#println(string(strategies_short_name[1], " ", minimizers_short_name[min]))
res = burgers(strategies[strat], minimizers[min])
push!(error_res, string(strat,min) => res[1])
push!(params_res, string(strat,min) => res[2])
push!(times, string(strat,min) => res[3])
push!(losses_res, string(strat,min) => res[4])
end
end
Starting run
Results
#PLOT ERROR VS ITER: to compare to compare between minimizers, keeping the same strategy (easily adjustable to compare between strategies)
error_iter = Plots.plot(1:length(error_res["11"]), error_res["11"], yaxis=:log10, title = string("Burger error vs iter"), ylabel = "Error", label = string(minimizers_short_name[1]), ylims = (0.0001,1))
plot!(error_iter, 1:length(error_res["12"]), error_res["12"], yaxis=:log10, label = string(minimizers_short_name[2]))
plot!(error_iter, 1:length(error_res["13"]), error_res["13"], yaxis=:log10, label = string(minimizers_short_name[3]))
plot!(error_iter, 1:length(error_res["14"]), error_res["14"], yaxis=:log10, label = string(minimizers_short_name[4]))
plot!(error_iter, 1:length(error_res["15"]), error_res["15"], yaxis=:log10, label = string(minimizers_short_name[5]))
plot!(error_iter, 1:length(error_res["16"]), error_res["16"], yaxis=:log10, label = string(minimizers_short_name[6]))
plot!(error_iter, 1:length(error_res["17"]), error_res["17"], yaxis=:log10, label = string(minimizers_short_name[7]))
plot!(error_iter, 1:length(error_res["18"]), error_res["18"], yaxis=:log10, label = string(minimizers_short_name[8]))
Plots.plot(error_iter)
#Use after having modified the analysis setting correctly --> Error vs iter: to compare different strategies, keeping the same minimizer
#error_iter = Plots.plot(1:length(error_res["11"]), error_res["11"], yaxis=:log10, title = string("Burger error vs iter"), ylabel = "Error", label = string(strategies_short_name[1]), ylims = (0.0001,1))
#plot!(error_iter, 1:length(error_res["21"]), error_res["21"], yaxis=:log10, label = string(strategies_short_name[2]))
#plot!(error_iter, 1:length(error_res["31"]), error_res["31"], yaxis=:log10, label = string(strategies_short_name[3]))
#plot!(error_iter, 1:length(error_res["41"]), error_res["41"], yaxis=:log10, label = string(strategies_short_name[4]))
#plot!(error_iter, 1:length(error_res["51"]), error_res["51"], yaxis=:log10, label = string(strategies_short_name[5]))
#plot!(error_iter, 1:length(error_res["61"]), error_res["61"], yaxis=:log10, label = string(strategies_short_name[6]))
#plot!(error_iter, 1:length(error_res["71"]), error_res["71"], yaxis=:log10, label = string(strategies_short_name[7]))
#PLOT ERROR VS TIME: to compare to compare between minimizers, keeping the same strategy
error_time = plot(times["11"], error_res["11"], yaxis=:log10, label = string(minimizers_short_name[1]),title = string("Burger error vs time"), ylabel = "Error", size = (1500,500))
plot!(error_time, times["12"], error_res["12"], yaxis=:log10, label = string(minimizers_short_name[2]))
plot!(error_time, times["13"], error_res["13"], yaxis=:log10, label = string(minimizers_short_name[3]))
plot!(error_time, times["14"], error_res["14"], yaxis=:log10, label = string(minimizers_short_name[4]))
plot!(error_time, times["15"], error_res["15"], yaxis=:log10, label = string(minimizers_short_name[5]))
plot!(error_time, times["16"], error_res["16"], yaxis=:log10, label = string(minimizers_short_name[6]))
plot!(error_time, times["17"], error_res["17"], yaxis=:log10, label = string(minimizers_short_name[7]))
plot!(error_time, times["18"], error_res["18"], yaxis=:log10, label = string(minimizers_short_name[7]))
Plots.plot(error_time)
#Use after having modified the analysis setting correctly --> Error vs time: to compare different strategies, keeping the same minimizer
#error_time = plot(times["11"], error_res["11"], yaxis=:log10, label = string(strategies_short_name[1]),title = string("Burger error vs time"), ylabel = "Error", size = (1500,500))
#plot!(error_time, times["21"], error_res["21"], yaxis=:log10, label = string(strategies_short_name[2]))
#plot!(error_time, times["31"], error_res["31"], yaxis=:log10, label = string(strategies_short_name[3]))
#plot!(error_time, times["41"], error_res["41"], yaxis=:log10, label = string(strategies_short_name[4]))
#plot!(error_time, times["51"], error_res["51"], yaxis=:log10, label = string(strategies_short_name[5]))
#plot!(error_time, times["61"], error_res["61"], yaxis=:log10, label = string(strategies_short_name[6]))
#plot!(error_time, times["71"], error_res["71"], yaxis=:log10, label = string(strategies_short_name[7]))
Appendix
These benchmarks are a part of the SciMLBenchmarks.jl repository, found at: https://github.com/SciML/SciMLBenchmarks.jl. For more information on high-performance scientific machine learning, check out the SciML Open Source Software Organization https://sciml.ai.
To locally run this benchmark, do the following commands:
using SciMLBenchmarks
SciMLBenchmarks.weave_file("benchmarks/PINNOptimizers","burgers_equation.jmd")
Computer Information:
Julia Version 1.6.5
Commit 9058264a69 (2021-12-19 12:30 UTC)
Platform Info:
OS: Linux (x86_64-pc-linux-gnu)
CPU: AMD EPYC 7502 32-Core Processor
WORD_SIZE: 64
LIBM: libopenlibm
LLVM: libLLVM-11.0.1 (ORCJIT, znver2)
Environment:
BUILDKITE_PLUGIN_JULIA_CACHE_DIR = /cache/julia-buildkite-plugin
JULIA_DEPOT_PATH = /cache/julia-buildkite-plugin/depots/5b300254-1738-4989-ae0a-f4d2d937f953
Package Information:
Status `/cache/build/exclusive-amdci3-0/julialang/scimlbenchmarks-dot-jl/benchmarks/PINNOptimizers/Project.toml`
[8a292aeb] Cuba v2.2.0
[667455a9] Cubature v1.5.1
[aae7a2af] DiffEqFlux v1.44.0
[587475ba] Flux v0.12.8
[a75be94c] GalacticOptim v2.2.0
[961ee093] ModelingToolkit v6.7.1
[315f7962] NeuralPDE v4.0.1
[429524aa] Optim v1.5.0
[91a5bcdd] Plots v1.24.2
[67601950] Quadrature v1.12.0
[31c91b34] SciMLBenchmarks v0.1.0
And the full manifest:
Status `/cache/build/exclusive-amdci3-0/julialang/scimlbenchmarks-dot-jl/benchmarks/PINNOptimizers/Manifest.toml`
[621f4979] AbstractFFTs v1.0.1
[1520ce14] AbstractTrees v0.3.4
[79e6a3ab] Adapt v3.3.1
[ec485272] ArnoldiMethod v0.1.0
[4fba245c] ArrayInterface v3.1.40
[13072b0f] AxisAlgorithms v1.0.1
[ab4f0b2a] BFloat16s v0.2.0
[e2ed5e7c] Bijections v0.1.3
[62783981] BitTwiddlingConvenienceFunctions v0.1.1
[fa961155] CEnum v0.4.1
[2a0fbf3d] CPUSummary v0.1.6
[00ebfdb7] CSTParser v3.3.0
[052768ef] CUDA v3.5.0
[7057c7e9] Cassette v0.3.9
[082447d4] ChainRules v1.14.0
[d360d2e6] ChainRulesCore v1.11.1
[9e997f8a] ChangesOfVariables v0.1.1
[fb6a15b2] CloseOpenIntervals v0.1.4
[944b1d66] CodecZlib v0.7.0
[35d6a980] ColorSchemes v3.15.0
[3da002f7] ColorTypes v0.11.0
[5ae59095] Colors v0.12.8
[861a8166] Combinatorics v1.0.2
[a80b9123] CommonMark v0.8.3
[38540f10] CommonSolve v0.2.0
[bbf7d656] CommonSubexpressions v0.3.0
[34da2185] Compat v3.40.0
[b152e2b5] CompositeTypes v0.1.2
[8f4d0f93] Conda v1.5.2
[88cd18e8] ConsoleProgressMonitor v0.1.2
[187b0558] ConstructionBase v1.3.0
[d38c429a] Contour v0.5.7
[a8cc5b0e] Crayons v4.0.4
[8a292aeb] Cuba v2.2.0
[667455a9] Cubature v1.5.1
[754358af] DEDataArrays v0.2.0
[9a962f9c] DataAPI v1.9.0
[82cc6244] DataInterpolations v3.6.1
[864edb3b] DataStructures v0.18.10
[e2d170a0] DataValueInterfaces v1.0.0
[b429d917] DensityInterface v0.4.0
[2b5f629d] DiffEqBase v6.76.0
[459566f4] DiffEqCallbacks v2.17.0
[aae7a2af] DiffEqFlux v1.44.0
[c894b116] DiffEqJump v7.3.1
[77a26b50] DiffEqNoiseProcess v5.9.0
[41bf760c] DiffEqSensitivity v6.60.3
[163ba53b] DiffResults v1.0.3
[b552c78f] DiffRules v1.5.0
[b4f34e82] Distances v0.10.6
[31c24e10] Distributions v0.25.34
[ced4e74d] DistributionsAD v0.6.34
[ffbed154] DocStringExtensions v0.8.6
[5b8099bc] DomainSets v0.5.9
[7c1d4256] DynamicPolynomials v0.3.21
[da5c29d0] EllipsisNotation v1.1.1
[7da242da] Enzyme v0.7.2
[d4d017d3] ExponentialUtilities v1.10.2
[e2ba6199] ExprTools v0.1.6
[c87230d0] FFMPEG v0.4.1
[7a1cc6ca] FFTW v1.4.5
[7034ab61] FastBroadcast v0.1.11
[9aa1b823] FastClosures v0.3.2
[1a297f60] FillArrays v0.12.7
[6a86dc24] FiniteDiff v2.8.1
[53c48c17] FixedPointNumbers v0.8.4
[587475ba] Flux v0.12.8
[59287772] Formatting v0.4.2
[f6369f11] ForwardDiff v0.10.23
[069b7b12] FunctionWrappers v1.1.2
[d9f16b24] Functors v0.2.7
[0c68f7d7] GPUArrays v8.1.2
[61eb1bfa] GPUCompiler v0.13.8
[28b8d3ca] GR v0.62.1
[a75be94c] GalacticOptim v2.2.0
[5c1252a2] GeometryBasics v0.4.1
[d7ba0133] Git v1.2.1
[af5da776] GlobalSensitivity v1.2.2
[86223c79] Graphs v1.4.1
[42e2da0e] Grisu v1.0.2
[19dc6840] HCubature v1.5.0
[cd3eb016] HTTP v0.9.17
[eafb193a] Highlights v0.4.5
[3e5b6fbb] HostCPUFeatures v0.1.5
[0e44f5e4] Hwloc v2.0.0
[7073ff75] IJulia v1.23.2
[7869d1d1] IRTools v0.4.4
[615f187c] IfElse v0.1.1
[d25df0c9] Inflate v0.1.2
[83e8ac13] IniFile v0.5.0
[a98d9a8b] Interpolations v0.13.4
[8197267c] IntervalSets v0.5.3
[3587e190] InverseFunctions v0.1.2
[92d709cd] IrrationalConstants v0.1.1
[c8e1da08] IterTools v1.3.0
[42fd0dbc] IterativeSolvers v0.9.2
[82899510] IteratorInterfaceExtensions v1.0.0
[692b3bcd] JLLWrappers v1.3.0
[682c06a0] JSON v0.21.2
[98e50ef6] JuliaFormatter v0.18.1
[e5e0dc1b] Juno v0.8.4
[5ab0869b] KernelDensity v0.6.3
[929cbde3] LLVM v4.7.0
[b964fa9f] LaTeXStrings v1.3.0
[2ee39098] LabelledArrays v1.6.7
[23fbe1c1] Latexify v0.15.9
[a5e1c1ea] LatinHypercubeSampling v1.8.0
[73f95e8e] LatticeRules v0.0.1
[10f19ff3] LayoutPointers v0.1.4
[1d6d02ad] LeftChildRightSiblingTrees v0.1.2
[093fc24a] LightGraphs v1.3.5
[d3d80556] LineSearches v7.1.1
[2ab3a3ac] LogExpFunctions v0.3.5
[e6f89c97] LoggingExtras v0.4.7
[bdcacae8] LoopVectorization v0.12.98
[1914dd2f] MacroTools v0.5.9
[d125e4d3] ManualMemory v0.1.6
[739be429] MbedTLS v1.0.3
[442fdcdd] Measures v0.3.1
[e89f7d12] Media v0.5.0
[e1d29d7a] Missings v1.0.2
[961ee093] ModelingToolkit v6.7.1
[4886b29c] MonteCarloIntegration v0.0.3
[46d2c3a1] MuladdMacro v0.2.2
[102ac46a] MultivariatePolynomials v0.3.18
[ffc61752] Mustache v1.0.12
[d8a4904e] MutableArithmetics v0.2.22
[d41bc354] NLSolversBase v7.8.2
[2774e3e8] NLsolve v4.5.1
[872c559c] NNlib v0.7.31
[a00861dc] NNlibCUDA v0.1.10
[77ba4419] NaNMath v0.3.5
[315f7962] NeuralPDE v4.0.1
[8913a72c] NonlinearSolve v0.3.11
[d8793406] ObjectFile v0.3.7
[6fe1bfb0] OffsetArrays v1.10.8
[429524aa] Optim v1.5.0
[bac558e1] OrderedCollections v1.4.1
[1dea7af3] OrdinaryDiffEq v5.68.0
[90014a1f] PDMats v0.11.5
[d96e819e] Parameters v0.12.3
[69de0a69] Parsers v2.1.2
[ccf2f8ad] PlotThemes v2.0.1
[995b91a9] PlotUtils v1.0.15
[91a5bcdd] Plots v1.24.2
[e409e4f3] PoissonRandom v0.4.0
[f517fe37] Polyester v0.5.4
[1d0040c9] PolyesterWeave v0.1.2
[85a6dd25] PositiveFactorizations v0.2.4
[d236fae5] PreallocationTools v0.2.0
[21216c6a] Preferences v1.2.2
[33c8b6b6] ProgressLogging v0.1.4
[92933f4c] ProgressMeter v1.7.1
[1fd47b50] QuadGK v2.4.2
[67601950] Quadrature v1.12.0
[8a4e6c94] QuasiMonteCarlo v0.2.3
[74087812] Random123 v1.4.2
[e6cf234a] RandomNumbers v1.5.3
[c84ed2f1] Ratios v0.4.2
[c1ae055f] RealDot v0.1.0
[3cdcf5f2] RecipesBase v1.2.1
[01d81517] RecipesPipeline v0.4.1
[731186ca] RecursiveArrayTools v2.20.0
[f2c3362d] RecursiveFactorization v0.2.5
[189a3867] Reexport v1.2.2
[05181044] RelocatableFolders v0.1.3
[ae029012] Requires v1.1.3
[ae5879a3] ResettableStacks v1.1.1
[37e2e3b7] ReverseDiff v1.10.0
[79098fc4] Rmath v0.7.0
[7e49a35a] RuntimeGeneratedFunctions v0.5.3
[3cdde19b] SIMDDualNumbers v0.1.0
[94e857df] SIMDTypes v0.1.0
[476501e8] SLEEFPirates v0.6.28
[1bc83da4] SafeTestsets v0.0.1
[0bca4576] SciMLBase v1.19.5
[31c91b34] SciMLBenchmarks v0.1.0
[6c6a2e73] Scratch v1.1.0
[efcf1570] Setfield v0.8.0
[992d4aef] Showoff v1.0.3
[699a6c99] SimpleTraits v0.9.4
[ed01d8cd] Sobol v1.5.0
[b85f4697] SoftGlobalScope v1.1.0
[a2af1166] SortingAlgorithms v1.0.1
[47a9eef4] SparseDiffTools v1.18.1
[276daf66] SpecialFunctions v1.8.1
[860ef19b] StableRNGs v1.0.0
[aedffcd0] Static v0.4.0
[90137ffa] StaticArrays v1.2.13
[82ae8749] StatsAPI v1.1.0
[2913bbd2] StatsBase v0.33.13
[4c63d2b9] StatsFuns v0.9.14
[789caeaf] StochasticDiffEq v6.41.0
[7792a7ef] StrideArraysCore v0.2.9
[69024149] StringEncodings v0.3.5
[09ab397b] StructArrays v0.6.3
[53d494c1] StructIO v0.3.0
[d1185830] SymbolicUtils v0.16.0
[0c5d862f] Symbolics v3.5.1
[3783bdb8] TableTraits v1.0.1
[bd369af6] Tables v1.6.0
[8ea1fca8] TermInterface v0.1.8
[5d786b92] TerminalLoggers v0.1.5
[8290d209] ThreadingUtilities v0.4.6
[a759f4b9] TimerOutputs v0.5.13
[0796e94c] Tokenize v0.5.21
[9f7883ad] Tracker v0.2.16
[3bb67fe8] TranscodingStreams v0.9.6
[592b5752] Trapz v2.0.3
[a2a6695c] TreeViews v0.3.0
[d5829a12] TriangularSolve v0.1.8
[5c2747f8] URIs v1.3.0
[3a884ed6] UnPack v1.0.2
[1cfade01] UnicodeFun v0.4.1
[1986cc42] Unitful v1.9.2
[3d5dd08c] VectorizationBase v0.21.21
[81def892] VersionParsing v1.2.1
[19fa3120] VertexSafeGraphs v0.2.0
[44d3d7a6] Weave v0.10.10
[efce3f68] WoodburyMatrices v0.5.5
[ddb6d928] YAML v0.4.7
[c2297ded] ZMQ v1.2.1
[a5390f91] ZipFile v0.9.4
[e88e6eb3] Zygote v0.6.32
[700de1a5] ZygoteRules v0.2.2
[6e34b625] Bzip2_jll v1.0.6+5
[83423d85] Cairo_jll v1.16.0+6
[3bed1096] Cuba_jll v4.2.2+0
[7bc98958] Cubature_jll v1.0.5+0
[5ae413db] EarCut_jll v2.2.3+0
[7cc45869] Enzyme_jll v0.0.22+0
[2e619515] Expat_jll v2.2.10+0
[b22a6f82] FFMPEG_jll v4.3.1+4
[f5851436] FFTW_jll v3.3.10+0
[a3f928ae] Fontconfig_jll v2.13.1+14
[d7e528f0] FreeType2_jll v2.10.1+5
[559328eb] FriBidi_jll v1.0.10+0
[0656b61e] GLFW_jll v3.3.5+1
[d2c73de3] GR_jll v0.58.1+0
[78b55507] Gettext_jll v0.20.1+7
[f8c6e375] Git_jll v2.31.0+0
[7746bdde] Glib_jll v2.59.0+4
[e33a78d0] Hwloc_jll v2.5.0+0
[1d5cc7b8] IntelOpenMP_jll v2018.0.3+2
[aacddb02] JpegTurbo_jll v2.1.0+0
[c1c5ebd0] LAME_jll v3.100.1+0
[dad2f222] LLVMExtra_jll v0.0.13+0
[dd4b983a] LZO_jll v2.10.1+0
[dd192d2f] LibVPX_jll v1.10.0+0
[e9f186c6] Libffi_jll v3.2.2+1
[d4300ac3] Libgcrypt_jll v1.8.7+0
[7e76a0d4] Libglvnd_jll v1.3.0+3
[7add5ba3] Libgpg_error_jll v1.42.0+0
[94ce4f54] Libiconv_jll v1.16.1+1
[4b2f31a3] Libmount_jll v2.35.0+0
[89763e89] Libtiff_jll v4.3.0+0
[38a345b3] Libuuid_jll v2.36.0+0
[856f044c] MKL_jll v2021.1.1+2
[e7412a2a] Ogg_jll v1.3.5+0
[458c3c95] OpenSSL_jll v1.1.10+0
[efe28fd5] OpenSpecFun_jll v0.5.5+0
[91d4177d] Opus_jll v1.3.2+0
[2f80f16e] PCRE_jll v8.44.0+0
[30392449] Pixman_jll v0.40.1+0
[ea2cea3b] Qt5Base_jll v5.15.2+0
[f50d1b31] Rmath_jll v0.3.0+0
[a2964d1f] Wayland_jll v1.19.0+0
[2381bf8a] Wayland_protocols_jll v1.23.0+0
[02c8fc9c] XML2_jll v2.9.12+0
[aed1982a] XSLT_jll v1.1.34+0
[4f6342f7] Xorg_libX11_jll v1.6.9+4
[0c0b7dd1] Xorg_libXau_jll v1.0.9+4
[935fb764] Xorg_libXcursor_jll v1.2.0+4
[a3789734] Xorg_libXdmcp_jll v1.1.3+4
[1082639a] Xorg_libXext_jll v1.3.4+4
[d091e8ba] Xorg_libXfixes_jll v5.0.3+4
[a51aa0fd] Xorg_libXi_jll v1.7.10+4
[d1454406] Xorg_libXinerama_jll v1.1.4+4
[ec84b674] Xorg_libXrandr_jll v1.5.2+4
[ea2f1a96] Xorg_libXrender_jll v0.9.10+4
[14d82f49] Xorg_libpthread_stubs_jll v0.1.0+3
[c7cfdc94] Xorg_libxcb_jll v1.13.0+3
[cc61e674] Xorg_libxkbfile_jll v1.1.0+4
[12413925] Xorg_xcb_util_image_jll v0.4.0+1
[2def613f] Xorg_xcb_util_jll v0.4.0+1
[975044d2] Xorg_xcb_util_keysyms_jll v0.4.0+1
[0d47668e] Xorg_xcb_util_renderutil_jll v0.3.9+1
[c22f9ab0] Xorg_xcb_util_wm_jll v0.4.1+1
[35661453] Xorg_xkbcomp_jll v1.4.2+4
[33bec58e] Xorg_xkeyboard_config_jll v2.27.0+4
[c5fb5394] Xorg_xtrans_jll v1.4.0+3
[8f1865be] ZeroMQ_jll v4.3.4+0
[3161d3a3] Zstd_jll v1.5.0+0
[0ac62f75] libass_jll v0.14.0+4
[f638f0a6] libfdk_aac_jll v0.1.6+4
[b53b4c65] libpng_jll v1.6.38+0
[a9144af2] libsodium_jll v1.0.20+0
[f27f6e37] libvorbis_jll v1.3.7+0
[1270edf5] x264_jll v2020.7.14+2
[dfaa095f] x265_jll v3.0.0+3
[d8fb68d0] xkbcommon_jll v0.9.1+5
[0dad84c5] ArgTools
[56f22d72] Artifacts
[2a0f44e3] Base64
[ade2ca70] Dates
[8bb1440f] DelimitedFiles
[8ba89e20] Distributed
[f43a241f] Downloads
[7b1f6079] FileWatching
[9fa8497b] Future
[b77e0a4c] InteractiveUtils
[4af54fe1] LazyArtifacts
[b27032c2] LibCURL
[76f85450] LibGit2
[8f399da3] Libdl
[37e2e46d] LinearAlgebra
[56ddb016] Logging
[d6f4376e] Markdown
[a63ad114] Mmap
[ca575930] NetworkOptions
[44cfe95a] Pkg
[de0858da] Printf
[9abbd945] Profile
[3fa0cd96] REPL
[9a3f8284] Random
[ea8e919c] SHA
[9e88b42a] Serialization
[1a1011a3] SharedArrays
[6462fe0b] Sockets
[2f01184e] SparseArrays
[10745b16] Statistics
[4607b0f0] SuiteSparse
[fa267f1f] TOML
[a4e569a6] Tar
[8dfed614] Test
[cf7118a7] UUIDs
[4ec0a83e] Unicode
[e66e0078] CompilerSupportLibraries_jll
[deac9b47] LibCURL_jll
[29816b5a] LibSSH2_jll
[c8ffd9c3] MbedTLS_jll
[14a3606d] MozillaCACerts_jll
[05823500] OpenLibm_jll
[efcefdf7] PCRE2_jll
[83775a58] Zlib_jll
[8e850ede] nghttp2_jll
[3f19e933] p7zip_jll