SciML logo
SciML
  • The SciML Open Souce Software Ecosystem
  • Equation Solvers
    • Equation Solvers Overview
      • Home
        • Solving Linear Systems in Julia
        • Linear Solve with Caching Interface
        • Linear Problems
        • Common Solver Options (Keyword Arguments for Solve)
        • Caching Interface API Functions
        • Preconditioners
        • Frequently Asked Questions
        • Linear System Solvers
        • Developing New Linear Solvers
        • Passing in a Custom Linear Solver
      • Home
        • Solving Nonlinear Systems
        • Nonlinear Solver Iterator Interface
        • Nonlinear Problems
        • NonlinearFunctions and Jacobian Types
        • Frequently Asked Questions
        • Nonlinear System Solvers
        • Bracketing Solvers
      • DifferentialEquations.jl: Scientific Machine Learning (SciML) Enabled Simulation and Estimation
        • Ordinary Differential Equations
        • Code Optimization for Differential Equations
        • Solving Large Stiff Equations
        • Stochastic Differential Equations
        • Random Ordinary Differential Equations
        • Delay Differential Equations
        • Differential Algebraic Equations
        • Continuous-Time Jump Processes and Gillespie Methods
        • Jump Diffusion Equations
        • Boundary Value Problems
        • Additional Tutorials
        • Overview of DifferentialEquations.jl
        • Common Solver Options (Solve Keyword Arguments)
        • Solution Handling
        • Plot Functions
        • Integrator Interface
        • Problem Interface
        • Frequently Asked Questions
        • Solver Compatibility Chart
        • Discrete Problems
        • ODE Problems
        • Non-autonomous Linear ODE / Lie Group Problems
        • Dynamical, Hamiltonian and 2nd Order ODE Problems
        • Split ODE Problems
        • Steady State Problems
        • BVP Problems
        • SDE Problems
        • SDAE Problems
        • RODE Problems
        • DDE Problems
        • SDDE Problems
        • DAE Problems
        • Jump Problems
        • Discrete Solvers
        • ODE Solvers
        • Non-autonomous Linear ODE / Lie Group ODE Solvers
        • Dynamical, Hamiltonian, and 2nd Order ODE Solvers
        • Split ODE Solvers
        • Steady State Solvers
        • BVP Solvers
        • Jump Problem and Jump Diffusion Solvers
        • SDE Solvers
        • SDAE Solvers
        • RODE Solvers
        • DDE Solvers
        • SDDE Solvers
        • DAE Solvers
        • Solver Benchmarks
        • Jacobians, Gradients, etc.
        • DiffEq-Specific Array Types
        • DiffEqOperators
        • Noise Processes
        • Specifying (Non)Linear Solvers and Preconditioners
        • Event Handling and Callback Functions
        • Callback Library
        • Parallel Ensemble Simulations
        • I/O: Saving and Loading Solution Data
        • Low Dependency Usage
        • Progress Bar Integration
        • ParameterizedFunctions
        • Parameter Estimation and Bayesian Analysis
        • Bifurcation Analysis
        • Local Sensitivity Analysis (Automatic Differentiation)
        • Global Sensitivity Analysis
        • Uncertainty Quantification
        • Neural Networks
        • Algorithm Development and Testing
        • Multi-Scale Models
        • Physical Models
        • Financial Models
        • Chemical Reactions
        • External Modeling Packages
        • Timestepping Method Descriptions
      • Home
        • Numerically Solving Integrals
        • Differentiating Integrals
        • Integral Problems
        • Common Solver Options (Solve Keyword Arguments)
        • Frequently Asked Questions
        • Integral Solver Algorithms
      • Optimization.jl: A Unified Optimization Package
        • Basic usage
        • Solving the Rosenbrock Problem in >10 Ways
        • Data Iterators and Minibatching
        • Symbolic Problem Building with ModelingToolkit
        • Using Equality and Inequality Constraints
        • Defining OptimizationProblems
        • OptimizationFunction
        • Common Solver Options (Solve Keyword Arguments)
        • ModelingToolkit Integration
        • BlackBoxOptim.jl
        • CMAEvolutionStrategy.jl
        • Evolutionary.jl
        • Flux.jl
        • GCMAES.jl
        • MathOptInterface.jl
        • MultistartOptimization.jl
        • Metaheuristics.jl
        • NOMAD.jl
        • NLopt.jl
        • Nonconvex.jl
        • Optim.jl
        • Optimisers.jl
        • QuadDIRECT.jl
      • Home
        • Simple Poisson Processes in JumpProcesses
        • Continuous-Time Jump Processes and Gillespie Methods
        • Piecewise Deterministic Markov Processes and Jump Diffusion Equations
      • FAQ
        • Jump types and JumpProblem
        • Jump solvers
      • API
  • Partial Differential Equation Solvers
    • Partial Differential Equation (PDE) Solvers Overview
      • MethodOfLines.jl: Automated Finite Difference for Physics-Informed Learning
        • Tutorial
        • Solving the Heat Equation
        • Adding parameters
        • Steady State Heat Equation - No Time Dependance - NonlinearProblem
        • Steady state of SIS (suspected-infected-suspected) reaction-diffusion model
        • Initial and Boundary Conditions with sampled/measured Data
      • MOLFiniteDifference
      • Grid and Solution Retrieval
      • Boundary Conditions
      • Non-Uniform Rectilinear Grids
      • Curvilinear Grids
      • How it Works
      • Notes for Developers: Implement a Scheme
        • Generated Code for the Brusselator Equation
        • Generated ODE system for the Brusselator Equation
        • Discretization
        • Utilities
      • NeuralPDE.jl: Automatic Physics-Informed Neural Networks (PINNs)
        • Introduction to NeuralPDE for ODEs
        • Introduction to NeuralPDE for PDEs
        • Using GPUs
        • Defining Systems of PDEs
        • Imposing Constraints
        • The symbolic_discretize Interface
        • Optimising Parameters (Solving Inverse Problems)
        • Solving Integro Differential Equations
        • Transfer Learning with Neural Adapter
        • The Derivative Neural Network Approximation
        • 1D Wave Equation with Dirichlet boundary conditions
        • ODE with a 3rd-Order Derivative
        • Kuramoto–Sivashinsky equation
        • PDEs with Dependent Variables on Heterogeneous Domains
        • Linear parabolic system of PDEs
        • Nonlinear elliptic system of PDEs
        • Nonlinear hyperbolic system of PDEs
        • ODE-Specialized Physics-Informed Neural Network (PINN) Solver
        • PhysicsInformedNN Discretizer for PDESystems
        • Training Strategies
        • Adaptive Loss Functions
        • Logging Utilities
        • Transfer Learning with neural_adapter
        • Debugging PINN Solutions
      • Home
      • Introduction
      • APIs
      • References
      • FEniCS.jl
      • Home
      • Getting started
        • The MLP algorithm
        • The DeepSplitting algorithm
      • Feynman Kac formula
      • DiffEqOperators.jl: Linear operators for Scientific Machine Learning
        • Solving KdV Solitons with Upwinding Operators
        • Operator Overview
        • Derivative Operators
        • Vector Calculus Operators
        • Vector-Jacobian Product Operators
        • Jacobian-Vector Product Operators
        • Matrix-Free Operators
        • Nonlinear Diffusion
  • Modeling Tools
    • SciML Modeling Libraries
      • Home
        • Composing Ordinary Differential Equations
        • Component-Based Modeling a Spring-Mass System
        • Acausal Component-Based Modeling the RC Circuit
        • Automatic Transformation of Nth Order ODEs to 1st Order ODEs
        • Exposing More Parallelism By Tearing Algebraic Equations in ODESystems
        • Modeling Nonlinear Systems
        • Modeling Optimization Problems
        • Modeling with Stochasticity
        • Parameter Identifiability in ODE Models
        • Automatically Accelerating ODEProblem Code
        • Automated Index Reduction of DAEs
        • Automated Sparse Analytical Jacobians
        • The AbstractSystem Interface
        • Contextual Variable Types
        • Symbolic metadata
        • Composing Models and Building Reusable Components
        • Model Validation and Units
        • Dependency Graphs
        • Frequently Asked Questions
        • ODESystem
        • SDESystem
        • JumpSystem
        • NonlinearSystem
        • OptimizationSystem
        • PDESystem
      • Comparison of ModelingToolkit vs Equation-Based and Block Modeling Languages
      • Internal Details
      • ModelingToolkitStandardLibrary.jl: A Standard Library for ModelingToolkit
        • RC Circuit
        • Custom Components
        • Thermal Conduction Model
        • Basic Blocks
        • Electrical Components
        • Magnetic Components
        • Mechanical Components
        • Thermal Components
      • Home
        • Using Catalyst
        • The Reaction DSL
        • Programmatic Construction of Symbolic Reaction Systems
        • Basic Chemical Reaction Network Examples
        • Compositional Modeling of Reaction Systems
        • Parametric Stoichiometry
        • Network Analysis in Catalyst
        • Bifurcation Diagrams
        • Parameter Estimation
        • Smoluchowski Coagulation Equation
      • FAQs
        • Catalyst.jl API
      • Home
      • Examples
      • API
      • Home
      • The ode_def macro
  • Inverse Problems
    • Parameter Estimation, Bayesian Analysis, and Inverse Problems Overview
      • SciMLSensitivity.jl: Automatic Differentiation and Adjoints for (Differential) Equation Solvers
          • Differentiating an ODE Solution with Automatic Differentiation
          • Direct Sensitivity Analysis Functionality
          • Adjoint Sensitivity Analysis of Continuous Functionals
          • Sensitivity analysis for chaotic systems (shadowing methods)
          • Optimization of Ordinary Differential Equations
          • Parameter Estimation on Highly Stiff Systems
          • Handling Exogenous Input Signals
          • Data-Parallel Multithreaded, Distributed, and Multi-GPU Batching
          • Prediction error method (PEM)
          • Newton and Hessian-Free Newton-Krylov with Second Order Adjoint Sensitivity Analysis
          • Neural Second Order Ordinary Differential Equation
          • Strategies to Avoid Local Minima
          • Handling Divergent and Unstable Trajectories
          • Simultaneous Fitting of Multiple Neural Networks
          • Neural Ordinary Differential Equations with Flux
          • Neural Graph Differential Equations
          • Training a Neural Ordinary Differential Equation with Mini-Batching
          • Optimization of Stochastic Differential Equations
          • Delay Differential Equations
          • Enforcing Physical Constraints via Universal Differential-Algebraic Equations
          • Partial Differential Equation (PDE) Constrained Optimization
          • Training Neural Networks in Hybrid Differential Equations
          • Bouncing Ball Hybrid ODE Optimization
          • Bayesian Estimation of Differential Equations with Probabilistic Programming
          • Solving Optimal Control Problems with Universal Differential Equations
          • Universal Differential Equations for Neural Feedback Control
          • Controlling Stochastic Differential Equations
        • Sensitivity Algorithms for Differential Equations with Automatic Differentiation (AD)
        • Sensitivity Algorithms for Nonlinear Problems with Automatic Differentiation (AD)
        • Direct Forward Sensitivity Analysis of ODEs
        • Direct Adjoint Sensitivities of Differential Equations
      • Benchmarks
      • Sensitivity Math Details
      • DiffEqParamEstim.jl: Parameter Estimation for Differential Equations
        • Optimization-Based ODE Parameter Estimation
        • Global Optimization via NLopt
        • Using JuMP with DiffEqParamEstim
        • Generalized Likelihood Inference
        • Parameter Estimation for Stochastic Differential Equations and Ensembles
        • Recommended Methods
        • Optimization-Based Methods
        • Two Stage method (Non-Parametric Collocation)
        • Alternative Objective Functions
      • DiffEqBayes.jl: Bayesian Parameter Estimation for Differential Equations
        • Installation
      • Methods
      • Examples
  • AbstractArray Libraries
    • AbstractArray Libraries
      • Home
      • Recursive Array Types
      • Recursive Array Functions
      • Home
      • Example: Nice DiffEq Syntax Without A DSL
      • SLArrays
      • LArrays
      • Relation to NamedTuples
      • Note: Labelled slices
      • Home
      • API
  • Uncertainty Quantification
    • Uncertainty Quantification Overview
      • Overview
      • Type Hierarchy
        • Numerical Integration
        • Quadrature Rules
        • Univariate Monic Orthogonal Polynomials
        • Gaussian Mixture Models
        • Multiple Discretization
        • Computation of Scalar Products
          • Basic Usage
          • Chi Squared, One DOF
          • Chi Squared, Several DOFs
          • Random ODE
        • Optimal Power Flow
      • Mathematical Background
      • Functions
  • Simulation Analysis
    • SciML Simulation Analysis Utilities
      • GlobalSensitivity.jl: Global Sensitivity Analysis (GSA)
        • Parallelized Morris and Sobol Sensitivity Analysis of an ODE
        • Global Sensitivity Analysis of the Lotka-Volterra model
        • Morris Method
        • Sobol Method
        • Regression Method
        • eFAST Method
        • Delta Moment-Independent Method
        • Derivative based Global Sensitivity Measure Method
        • EASI Method
        • Fractional Factorial Method
        • Random Balance Design FAST Method
  • Symbolic Analysis
    • SciML Symbolic Analysis Libraries
      • Home
        • Local Identifiability of Differential Models
        • Global Identifiability of Differential Models
        • Using ModelingToolkit.jl With StructuralIdentifiability.jl
        • Parsing input ODE system
        • ָFunctions to Assess Parameter Identifiability
        • Local Identifiability Tools
        • Global Identifiability Tools
        • Elimination
        • ODE Tools
        • Power Series Tools
        • Primality Chekcs
        • Wronskian Tools
        • Input-Output Equation tools
        • Other Utilities
        • Exporting to Other Systems
      • Home
      • API
  • Interfaces
    • The SciML Interface Libraries
      • Home
        • SciMLProblems
        • SciMLFunctions (Jacobians, Sparsity, Etc.)
        • SciMLAlgorithms
        • SciMLSolutions
        • The SciML init and solve Functions
        • Common Keyword Arguments
        • Automatic Differentiation and Sensitivity Algorithms (Adjoints)
        • The PDE Definition Interface
        • Frequently Asked Questions
      • Home
      • The AbstractSciMLOperator Interface
      • Premade SciMLOperators
      • Wrap a Fourier transform with SciMLOperators
      • The Common Solve Interface
  • Numerical Utilities
    • SciML Numerical Utility Libraries
      • Overview
        • Basics
        • Radials
        • Kriging
        • Gaussian Process
        • Lobachevsky
        • Linear
        • InverseDistance
        • RandomForest
        • SecondOrderPolynomial
        • NeuralSurrogate
        • Wendland
        • Polynomial Chaos
        • Variable Fidelity
        • Gradient Enhanced Kriging
        • GEKPLS
        • Samples
        • Surrogates
        • Optimization
        • Sphere function
        • Lp norm
        • Rosenbrock
        • Tensor product
        • Cantilever beam
        • Water Flow function
        • Welded beam function
        • Branin function
        • Ackley function
        • Gramacy & Lee Function
        • Salustowicz Benchmark
        • Multi objective optimization
      • Contributing
      • Home
      • Matrix Exponentials
      • Expv: Matrix Exponentials Times Vectors
      • Arnoldi Iteration
      • Home
      • Classic Noise Processes
      • Abstract Noise Processes
      • Home
      • Poisson Random API
      • Home
      • Sampler APIs
      • DataInterpolations.jl
      • FFTW.jl
      • RuntimeGeneratedFunctions.jl
      • MuladdMacro.jl
  • Machine Learning
    • SciML Machine Learning Libraries Overview
      • DiffEqFlux.jl: High Level Scientific Machine Learning (SciML) Pre-Built Architectures
        • Neural Ordinary Differential Equations
        • Neural ODEs on GPUs
        • GPU-based MNIST Neural ODE Classifier
        • Convolutional Neural ODE MNIST Classifier on GPU
        • Augmented Neural Ordinary Differential Equations
        • Neural Stochastic Differential Equations With Method of Moments
        • Smoothed Collocation for Fast Two-Stage Training
        • Continuous Normalizing Flows
        • Hamiltonian Neural Network
        • Physics-Informed Machine Learning (PIML) with TensorLayer
        • Multiple Shooting
        • Classical Basis Layers
        • Tensor Product Layer
        • Continuous Normalizing Flows Layer
        • Spline Layer
        • Neural Differential Equation Layers
        • Hamiltonian Neural Network Layer
        • Smoothed Collocation
        • Multiple Shooting Functionality
      • Home
        • Dynamical Systems
        • Non Linear Solvers
        • DEQ Layers
        • Miscellaneous
      • References
  • Learning Resources
    • Curated Learning, Teaching, and Training Resouces
  • Developer Documentation
    • Developer Documentation
      • SciML Style Guide for Julia
      • ColPrac: Contributor's Guide on Collaborative Practices for Community Packages
      • Home
        • Ecosystem Overview
        • Adding a new package to the common interface
        • Adding Algorithms
        • Developing A New Problem
        • The DiffEq Internals
        • Type Traits
        • Test Problems
        • Convergence Simulations
        • Benchmark Suite
        • Notes on Algorithms
        • ODE Tableaus
Version
  • Inverse Problems
  • DiffEqBayes
  • DiffEqBayes.jl: Bayesian Parameter Estimation for Differential Equations
  • DiffEqBayes.jl: Bayesian Parameter Estimation for Differential Equations
Edit on GitHub

DiffEqBayes.jl

This repository is a set of extension functionality for estimating the parameters of differential equations using Bayesian methods. It allows the choice of using CmdStan.jl, Turing.jl, DynamicHMC.jl and ApproxBayes.jl to perform a Bayesian estimation of a differential equation problem specified via the DifferentialEquations.jl interface.

Installation

For the Bayesian methods, you must install DiffEqBayes.jl:

]add DiffEqBayes
using DiffEqBayes
« Alternative Objective FunctionsMethods »

Powered by Documenter.jl and the Julia Programming Language.

Settings


This document was generated with Documenter.jl version 0.27.22 on Sunday 31 July 2022. Using Julia version 1.7.3.