Split ODE Problems
Mathematical Specification of a Split ODE Problem
To define a SplitODEProblem, you simply need to give a tuple of functions $(f_1,f_2,\ldots,f_n)$ and the initial condition $u₀$ which define an ODE:
f should be specified as f(t,u) (or in-place as f(t,u,du)), and u₀ should be an AbstractArray (or number) whose geometry matches the desired geometry of u. Note that we are not limited to numbers or vectors for u₀; one is allowed to provide u₀ as arbitrary matrices / higher dimension tensors as well.
Many splits are at least partially linear. For how to define a function as linear, see the documentation for the DiffEqOperators.
Constructors
SplitODEProblem{isinplace}(f1,f2,u0,tspan;kwargs...)Fields
f1,f2: The functions in the ODE.u0: The initial condition.tspan: The timespan for the problem.callback: A callback to be applied to every solver which uses the problem. Defaults to nothing.mass_matrix: The mass-matrix. Defaults toI, theUniformScalingidentity matrix.